Книга Темные данные. Практическое руководство по принятию правильных решений в мире недостающих данных, страница 28. Автор книги Дэвид Хэнд

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Темные данные. Практическое руководство по принятию правильных решений в мире недостающих данных»

Cтраница 28

Другой тип ошибки, связанной с человеческим фактором, повлиял на исход миссии NASA Genesis. Космический зонд успешно взял образцы частиц солнечного ветра с лунной орбиты и доставил их обратно, но на последней стадии полета, во время посадки в Юте, он потерпел крушение. Причина: неверные данные от акселерометров зонда, которые были установлены задом наперед, так что аппарат ускорялся, приближаясь к поверхности Земли, вместо того, чтобы замедляться.

Менее очевидная проблема заключается в том, что пригодность данных может со временем снижаться. Это происходит не потому, что данные портятся, подобно гниющим фруктам, а в силу того, что мир вокруг нас меняется. Вы думаете, например, что на ваш сберегательный счет по-прежнему начисляют 3 % в год, но при обращении в банк испытываете легкий шок, обнаружив, что ставка была снижена без всякого уведомления. Данные, относящиеся к людям, особенно подвержены устареванию (DD-тип 7: данные, меняющиеся со временем) по той простой причине, что меняются сами люди.

Что еще хуже (и в следующих главах мы это подробно рассмотрим), данные могут искажаться людьми преднамеренно. Исследование, проведенное Бюро переписи населения США в 1986 г., показало, что 3–5 % счетчиков причастны в той или иной форме к фальсификации данных, потому что слишком ленивы для настоящей работы по их сбору [56]. Американский статистик Уильям Крускал утверждал, что «достаточно проницательный человек, обладающий здравым смыслом и склонностью к цифрам, может взять почти любой структурированный и существенный набор данных или статистический сборник и менее чем за час обнаружить в нем странные числа» [57]. Медиааналитик Тони Твайман сформулировал закон, получивший известность как Закон Тваймана, который гласит, что любые численные данные, которые выглядят интригующе или как-то выделяются, обычно неверны [58]. Более того, ввиду гигантского количества ежедневно регистрируемых чисел следует ожидать, что какие-то из них будут введены неправильно. Например, в 2014 г. каждый день в мире совершалось около 35 млрд финансовых транзакций, и с тех пор это число только увеличилось. В своей книге «Принцип невероятности» (The Improbability Principle) я подробно рассматриваю проблему ошибочных записей при таком большом количестве цифр.

Специалисты в области глубинного анализа данных, которые занимаются поиском любопытных или полезных аномалий в больших наборах данных, называют следующие причины возникновения необычных структур в таких наборах (в порядке убывания их важности):

● проблема на уровне самих данных (возможно, они были повреждены или искажены в процессе сбора, или частично отсутствуют);

● аномалии обусловлены случайными колебаниями (иначе говоря, речь идет о единичных значениях, которые не несут в себе существенной информации);

● структуры уже известны (как, например, в случае открытия того факта, что люди часто покупают сыр и крекеры вместе);

● структуры не представляют интереса (если, например, обнаружено, что около половины женатых людей в Великобритании – женщины).

Пока все эти факторы не исключены, необычная структура не может называться реальной, интересной или потенциально ценной. Для нас же важно то, что большинство аномалий в этой области, кажущихся на первый взгляд открытиями, – не что иное, как иллюзии, вызванные проблемами на уровне данных.

Учитывая вышесказанное, неудивительно, что, по подсчетам IBM, «низкое качество данных обходится экономике США примерно в $3,1 трлн в год» [59]. Однако верна ли эта оценка?

Во-первых, все зависит от того, что именно она включает в себя: входит ли в оценку стоимость выявления проблем с данными, исправления допущенных ошибок, а также их последствий? Во-вторых, в контексте ВВП США, который составляет около $20 трлн, сумма $3,1 трлн кажется неоправданно большой, и у меня возникает вопрос, не является ли сама эта оценка «данными низкого качества»?

Недостатки приборов

Влияние человеческого фактора огромно, но не только люди допускают ошибки: порой из строя выходят измерительные приборы, что тоже влечет за собой скрытые проблемы с темными данными. По крайней мере если неисправность прибора не обнаружить сразу, то он какое-то время будет регистрировать нулевые или просто неверные значения. Помните эти драматичные моменты в фильмах, когда сигнал на кардиомониторе обрывается и мы видим недвусмысленную прямую, сопровождаемую жутким писком? Так вот, точно такую же картинку можно получить, если сенсоры просто свалятся с пациента.

Один из моих аспирантов работал над проектом по исследованию влияния неблагоприятных погодных условий, таких как сильные ветра и ливни, на телекоммуникационные сети. Он собрал данные из подробных отчетов об авариях в сетях и их ремонте, а также из метеосводок (фактически связывая наборы данных, как это описано в следующем разделе). Будучи толковым студентом, прежде чем приступить к анализу, он внимательно изучил сами данные, отобразил их графически и так и этак, выискивая аномальные значения, и в результате заметил нечто очень странное. Необработанные цифры показывали, что часто ровно в полночь на сотовые вышки обрушивались ураганные порывы ветра. Это выглядело тем более таинственно, что никто почему-то о них не мог вспомнить. И действительно, записи Метеорологической службы подтверждали, что ничего подобного вроде бы не происходило.

У зловещей загадки оказался забавный ответ. Копая глубже, аспирант обнаружил, что в полночь установленные на вышках анемометры, измеряющие скорость ветра, автоматически перезагружались. И иногда в этот момент они выдавали сигнал сильного порыва ветра, что, конечно, не имело отношения к действительности. Если бы мой ученик не понимал необходимости тщательно проверять данные, их анализ привел бы к абсурдным выводам. Но, к счастью, он заметил проблему и смог ее решить.

Неисправность приборов может обойтись очень дорого. В 2008 г. бомбардировщик ВВС США B-2 Spirit потерпел крушение на Гуаме из-за неверных данных, переданных намокшими датчиками. Экипаж полагал, что самолет набрал необходимую для взлета скорость 140 узлов, тогда как на деле она была на 10 узлов меньше.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация