Помимо генома все организмы имеют так называемый эпигеном. Эпигеном – это довольно запутанное понятие, и не все ученые дают ему одинаковое определение. В моем понимании, эпигеном можно представить в виде набора ярлыков, прикрепленного к геному. Эти ярлыки указывают на то, включен ли ген (вырабатывает белки) или выключен (не вырабатывает белки). Важно, что ярлыки на самом деле не являются частью генома, а значит, в течение жизни организма они могут изменяться. Эпигенетические ярлыки могут наследоваться, – это значит, что эпигенетическое состояние определенного гена может иногда передаваться от родителя к ребенку. Эти ярлыки могут, к примеру, приказать клетке включать только те гены, которые нужны ей для того, чтобы выполнять работу сердечной клетки. Другие ярлыки не наследуются в традиционном смысле, а возникают или изменяются вследствие взаимодействия между организмом и его средой обитания.
Известно большое разнообразие факторов внешней среды, воздействующих на эпигеном. Характер питания организма, стресс, токсины, физическая нагрузка – все это изменяет эпигеном, влияя на то, какие гены будут экспрессироваться, когда и насколько сильно. Ко времени, когда однояйцовые близнецы становятся взрослыми, их эпигеномы существенно различаются, хотя их геномы остаются одинаковыми. Именно сочетание геномной последовательности и эпигенетических изменений, накопленных за срок жизни каждого близнеца, приводит к развитию у них определенных фенотипов.
Осложнит ли эпигенетика нашу работу по возрождению вымерших видов? Мы не знаем. Пусть мы отредактируем геном слона, внеся в него участки ДНК мамонта, но организм, который начнет развиваться в результате, будет иметь эпигеном слона. Находясь в матке, он будет подвергаться воздействию среды, характерной для развития слона: его мать будет питаться едой, подходящей для слонов, жить в окружении, типичном для слонов, и у нее будут экспрессироваться слоновьи гены. Эмбрион будет питаться от слоновьей плаценты, в которой экспрессируются гены слона, модифицированные эпигеномом слонихи-матери.
Хотя мы не можем изучить эффект, который оказывает среда на развивающийся эмбрион, с помощью однояйцовых близнецов (потому что их внутриутробное развитие происходит в одной и той же среде), мы знаем, что здоровье матери и ее рацион во время беременности способны глубоко воздействовать на развитие плода. Характер питания матери может даже иметь отдаленные последствия для здоровья ребенка в течение дальнейшей жизни, к примеру увеличивать риск развития сердечно-сосудистых заболеваний или ожирения. Нам также известно, что, как ни удивительно, рацион матери до беременности может повлиять на эпигенетическое состояние ее генов, что повлияет в дальнейшем на развитие эмбриона. Почти наверняка характер питания и величина стресса, которому подвергнется мать-слониха, повлияют на развитие эмбриона мамонта (или эмбриона животного, подобного мамонту), но какими в точности будут эти эффекты, остается неизвестным.
В ряде случаев специфическая для вида среда развития эмбриона не играет ключевой роли в успешном развитии плода. Ученые из компании Роберта Ланзы Advanced Cell Technology, работающей в области генной инженерии, успешно клонировали гаура и бантенга (живые виды, находящиеся под угрозой исчезновения, близкие родственники домашних быков) методом ядерного переноса, используя домашних коров в качестве суррогатных матерей. Обе беременности протекали хорошо, и оба рожденных теленка прекрасно себя чувствовали. Однако неизвестно, чем отличались бы от этих животных клоны, рожденные от суррогатных матерей их собственных видов.
А что насчет среды, в которую организм попадет после рождения? Эпигенетические изменения накапливаются в течение жизни, и стимулирует их появление среда, в которой живет организм. В какой мере внешний вид и поведение мамонта зависят от его генома, а в какой – от жизни в степной тундре? Для того чтобы выяснить это, нам, возможно, понадобится время.
Одно их главных технических препятствий на пути успешного возрождения вымерших видов заключается в том, что мы пока не до конца понимаем геном и то, как он взаимодействует с окружающей средой. Как это препятствие преодолеть, пока непонятно. Удастся ли нам секвенировать геном мамонта до конца и выяснить, где в нем расположен каждый ген и за что он отвечает? Это позволило бы нам обойтись минимальными изменениями и в результате все равно получить мамонта. Или же технология редактирования генома дойдет до уровня, на котором мы сможем внести все необходимые изменения и получить геном, на 100 % соответствующий мамонтовому? Придумаем ли мы способ узнать, каким было эпигенетическое состояние древних тканей, в качестве первого шага к определению генов, которые должны быть включены или выключены у возрожденных особей?
Возможно, у нас вскоре появятся ответы на эти вопросы. Эксперименты по «нокину» и «нокауту» генов, в ходе которых ученые либо включают, либо выключают специфические гены у дрожжей, мышей и мух-дрозофил, позволяют нам выяснить, где находятся гены, что они делают и как взаимодействуют друг с другом. Для определения специфических генетических изменений, связанных с определенными фенотипами, к примеру адаптированными к жизни на большой высоте или подверженными развитию рака и других заболеваний, организовываются масштабные проекты по секвенированию генома человека на уровне популяции. Эти эксперименты нацелены на поиск способов определить наиболее «важные» изменения, которые следует внести. В то же время быстро развивается технология, лежащая в основе систем CRISPR-Cas9. Уже сейчас с помощью этих систем редактируются геномы более чем двадцати различных видов, при этом вырезаются и вставляются фрагменты генома длиной порядка десятков тысяч нуклеотидов. Вполне вероятно, что в конечном итоге мы найдем способ редактировать геном целиком.
Расшифровка древних эпигеномов тоже может оказаться осуществимой, отчасти благодаря тому, как именно происходит распад ДНК с течением времени. Оказывается, что метилирование ДНК – один из способов, которыми эпигеном «размечает» геном, – взаимодействует с процессом распада ДНК интересным и полезным для нас образом. При метилировании эпигеном изменяет геном, добавляя к цитозину (одному из четырех азотистых оснований, образующих ДНК) метильную группу (CH3). При распаде ДНК также задействуются цитозиновые основания, однако иным образом. При распаде ДНК цитозиновые основания зачастую дезаминируются – теряют часть своей химической структуры (аминогруппу) и превращаются в урацил, азотистое основание, при других условиях не встречающееся в ДНК. Но когда метилированные цитозиновые основания теряют аминогруппу, сочетанное действие двух этих химических процессов превращает цитозин не в урацил, а в тимин – еще один из четырех нуклеотидов, формирующих ДНК. Мы можем реконструировать древний эпигеном, отделив дезаминированные цитозиновые основания, которые превратились в тиминовые основания (появившиеся в результате процессов распада в ДНК, но после того, как на них воздействовал эпигеном), от тех, которые превратились в урациловые основания (также образовавшиеся в результате распада ДНК, однако не испытывавшие воздействия эпигенома).
Исследовательская группа Людовика Орландо из Копенгагенского университета в Дании впервые использовала такой подход для реконструкции эпигенома палеоэскимоса из гренландской культуры Саккак возрастом в 4 тысячи лет. Вскоре после этого группа ученых из Института эволюционной антропологии Общества Макса Планка, расположенного в немецком городе Лейпциге, а также из Еврейского университета в Иерусалиме составила эпигенетическую карту двух древних гоминин – неандертальца и денисовского человека. Ученые обнаружили около 2 тысяч различий между реконструированными эпигеномами древних гоминин и эпигеномами современных людей. Какие-то из этих расхождений могут отвечать за ряд различий в строении скелета между нами и нашими древними кузенами.