Книга Жизнь на грани. Ваша первая книга о квантовой биологии, страница 20. Автор книги Джим Аль-Халили, Джонджо МакФадден

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Жизнь на грани. Ваша первая книга о квантовой биологии»

Cтраница 20

Ферменты — это движущие силы жизни. Некоторые из них, вероятно, знакомы вам, поскольку все мы применяем их в повседневной жизни. Так, протеазы добавляют в «биологические» моющие средства, устраняющие пятна, пектин добавляют в джем для придания необходимой консистенции, а реннин используется для сворачивания молока и превращения его в сыр. Ферменты, находящиеся в желудке и кишечнике человека, играют большую роль в переваривании пищи. Но это лишь самые простые примеры действия природных наномеханизмов. Все живое зависит и всегда зависело от ферментов: и первые микроорганизмы, вышедшие из первичного бульона, и динозавры, разгуливавшие по лесам юрского периода, и все организмы, живущие сейчас. Каждая клетка в вашем теле заполнена сотнями или даже тысячами молекулярных механизмов, поддерживающих непрерывный процесс сборки и разрушения биомолекул, то есть процесс, который мы называем жизнью.

В описании деятельности ферментов ключевое слово — «помощь»: их задачей является помощь в ускорении (катализации) всех видов биохимических реакций, которые в отсутствие ферментов протекали бы слишком медленно. Таким образом, добавление ферментов протеаз в моющие средства ускоряет расщепление белков в пятнах, пектиновые ферменты ускоряют расщепление полисахаридов во фруктах, а реннин ускоряет свертывание молока. Подобным образом ферменты в наших клетках ускоряют метаболизм — процесс, в ходе которого триллионы внутриклеточных биомолекул непрерывно превращаются в триллионы других биомолекул и поддерживают нашу жизнь.

Фермент коллагеназа, который Мэри Швейцер добавила к кости динозавра, является всего лишь биомеханизмом, функция которого заключается в разрушении коллагеновых волокон в организме животного. Степень ускорения, которое придают реакциям ферменты, можно примерно оценить, сравнив время, необходимое для расщепления коллагеновых волокон в отсутствие ферментов (а именно, более 68 миллионов лет) и в присутствии необходимого фермента (около 30 минут): время реакции ускоряется в триллионы раз.

В данной главе мы рассмотрим, как ферменты, например коллагеназа, способны достигать таких астрономических показателей в ускорении химических реакции. Одной из сенсаций последних лет стало открытие ключевой роли квантовой механики в действии по крайней мере нескольких ферментов; а поскольку ферменты являются движущими силами жизни, то именно они и станут нашей отправной точкой в путешествии по квантовой биологии.

Ферменты: выбор между быстрым или мертвым

Люди стали применять ферменты за многие тысячелетия до их открытия и описания. Несколько тысяч лет назад наши предки превращали зерно и виноградный сок в пиво или вино с помощью добавления дрожжей, которые, по сути, представляют собой микробиологический мешочек с ферментами [29]. Люди давно поняли, что экстракты из оболочки желудка крупного рогатого скота (реннин, или сычужный фермент) ускоряют превращение молока в сыр. В течение многих столетий считалось, что эти превращающие свойства живых организмов обусловлены присущей им жизненной силой, от которой зависит и способность организмов к быстрым изменениям, а это и отличает живое («быстрое» из библейской цитаты в заголовке этого раздела) от мертвого.

В 1752 году вдохновленный механистической философией Рене Декарта французский ученый Рене Антуан Реомюр начал исследовать пищеварение — один из процессов, в котором участвовали, по предположениям ученых того времени, пресловутые жизненные силы. Ученый провел гениальный эксперимент. В то время считалось, что пища в организме животных переваривается механически, измельчаясь в ротовой полости и перемешиваясь в органах пищеварения. Эта теория подтверждалась данными, полученными в ходе изучения птиц, поскольку в их желудках обнаруживались мелкие камни, предназначенные, как считалось, для измельчения пищи — механического действия. Подобные предположения согласовывались и с идеями Рене Декарта (о них мы говорили в предыдущей главе) о механистичности животных. Но Реомюр был озадачен тем, как хищные птицы, в желудке которых камней не было, также могли переваривать пищу. Итак, он накормил ручного сокола небольшими кусочками мяса, спрятанными в крошечные металлические капсулы с небольшими отверстиями. Когда капсулы вышли из организма птицы, он обнаружил, что мясо было полностью переварено, несмотря на тот факт, что оно было заключено в металл и не могло подвергаться какому-либо механическому воздействию. Зубцы, шестеренки и рычаги явно не подходили для описания по крайней мере одной из движущих сил живого организма.

Через 100 лет после эксперимента Реомюра другой француз, химик и основатель микробиологии Луи Пастер, исследовал еще одно биологическое превращение, обусловленное, как считалось, воздействием жизненных сил. Речь идет о превращении виноградного сока в вино. Пастер доказал, что принцип превращения в ходе ферментации в действительности связан с живыми дрожжевыми клетками, присутствующими в «заквасках», которые используются в пивоваренной промышленности или при производстве хлеба. Термин «энзим» (в переводе с греческого — «в дрожжах») был введен немецким физиологом Вилли Кюне в 1877 году для описания активных веществ, участвующих в таких жизненных процессах, как, например, превращение под воздействием живых дрожжевых клеток или любых других веществ, взятых из живых тканей.

Но что же такое ферменты? Каким образом они ускоряют жизненные процессы? Давайте вернемся к разговору о коллагеназе — ферменте, который мы упомянули в самом начале главы.

Зачем нам нужны ферменты и как головастики теряют свои хвосты

Коллаген — это белок, наиболее часто встречающийся в организмах животных, в том числе и человека. Он действует как своего рода молекулярная нить, которая вплетается в ткани и между ними и связывает их между собой. Как и все белки, коллаген состоит из основных химических строительных блоков — цепей аминокислот. Они встречаются в организме в 20 вариантах. Некоторые аминокислоты (например, глицин, глутамин, лизин, цистеин, тирозин) могут быть знакомы вам как добавки к пище из магазинов здорового питания. Каждая молекула аминокислоты содержит от 10 до 50 атомов углерода, азота, кислорода, водорода и иногда серы, соединенных химическими связями в трехмерные структуры уникальной формы.

Несколько сотен закрученных аминокислотных молекулярных структур затем соединяются между собой и образуют белок, напоминающий нитку, на которую нанизаны бусины причудливой формы. Каждая бусина сцеплена со следующей с помощью пептидной связи, которая соединяет атом углерода одной аминокислоты с атомом азота следующей. Пептидные связи очень прочны; по крайней мере те, которые скрепляли коллагеновые волокна тираннозавра, выдержали 68 миллионов лет.

Коллаген является особо прочным белком, который выполняет функцию внутреннего каркаса, поддерживающего форму и структуру наших тканей. Белки сплетаются в тройные цепи, которые, в свою очередь, связываются в толстые канаты, или волокна. Эти волокна пронизывают наши ткани и связывают клетки вместе. Они также содержатся в сухожилиях, которые присоединяют мышцы к костям, и в связках, соединяющих отдельные кости. Плотная сеть таких волокон называется внеклеточным матриксом и обеспечивает целостность нашего организма.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация