Помимо несравненного Архимеда к величайшим математикам Эллинистической эпохи относится его более поздний современник Аполлоний Пергский. Аполлоний родился в 262 г. до н. э. в Перге, городе на юго-восточном побережье Малой Азии, который в тот момент находился под властью набиравшего силу Пергамского царства. Но он путешествовал в Александрию во время правления Птолемея III и Птолемея IV, то есть в период с 247 по 203 г. до н. э. Выдающаяся работа Аполлония посвящена коническим сечениям – эллипсу, параболе и гиперболе. Это кривые, которые получаются при рассечении конуса плоскостью под различными углами. Намного позднее теория конических сечений оказалась принципиально важной для Кеплера и Ньютона, но применения в физике античного мира она не нашла.
Несмотря на эти блестящие прозрения в области геометрии, в древнегреческой науке практически отсутствовали математические методы, являющиеся неотъемлемой частью современной физики. Греки не умели писать и преобразовывать алгебраические формулы. Выражения наподобие E = mc² и F = ma – суть современной физики. (В своем чисто математическом труде Диофант Александрийский, живший и работавший в Александрии в середине III в., использовал формулы, но символы в его уравнениях обозначали только целые или рациональные числа, а в используемых сейчас физиками формулах это не так.) Даже когда нужно описать пространственные свойства явления, современный физик предпочитает выводить геометрические соотношения алгебраическим путем, используя приемы аналитической геометрии, разработанные в XVII в. Рене Декартом и другими (об этом будет рассказано в главе 13). Вероятно, из-за престижа, заработанного успехами древнегреческих математиков, геометрический стиль доказательств превалировал вплоть до научной революции XVII в. Когда Галилео Галилей в 1623 г. в своей книге «Пробирных дел мастер»
{54} воздает хвалу математике, в первую очередь он говорит о геометрии: «Философия написана в величественной книге (я имею в виду Вселенную), которая постоянно открыта нашему взору, но понять ее может лишь тот, кто сначала научится постигать ее язык и толковать знаки, которыми она написана. Написана же она на языке математики, и знаки ее – треугольники, круги и другие геометрические фигуры, без которых человек не смог бы понять в ней ни единого слова; без них он был бы обречен блуждать в потемках по лабиринту». Надо заметить, что Галилей несколько отстал от времени, превознося геометрию над алгеброй. В своих собственных работах он уже использовал алгебру, но доля геометрии в них была больше, чем у некоторых его современников, и намного больше, чем можно ожидать от статьи в физическом журнале нашего времени.
Сегодня есть место и для чистой науки – науки, в которой исследования проводятся безотносительно возможности практического применения. В древнем же мире, до того, как ученые поняли необходимость находить подтверждения своих теорий, практическое применение науки было важно потому, что сулило немалую выгоду ученому – в том случае, если теория оказывалась верна. Если бы Архимед при своих измерениях относительной плотности неверно заключил, что фальшивая корона сделана из чистого золота, его репутация в Сиракузах сильно бы пострадала.
Я не хочу преувеличивать то значение, которое технические изобретения, основанные на научных выводах, имели в эпоху эллинизма или Древнего Рима. Многие из устройств Ктезибия или Герона служили не более чем игрушками или театральной машинерией. Историки утверждают, что основанная на рабовладении экономика не нуждается в машинах, позволяющих экономить человеческий труд, и поэтому паровой двигатель Герона остался игрушкой. Военное и гражданское строительство и механизация были важны и в древности, и цари Александрии поддерживали изучение катапульт и других метательных приспособлений, вероятно, в рамках деятельности Музея. Но эти направления не так много взяли от науки того времени.
Лишь одна сторона древнегреческой науки, имевшая огромное практическое значение, развивалась, достигая больших высот познания. Это была астрономия, о которой мы поговорим во второй части книги.
В отношении сделанных замечаний следует сказать, что есть одно серьезное исключение из правила о том, что необходимость практического применения вынуждает науку быть точной. Это – практическая медицина. До наступления современной эпохи самые авторитетные медики упорно применяли практические методики, такие как кровопускание, значение которых не было подтверждено экспериментально, притом на самом деле они несли больше вреда, чем пользы. Когда в XIX в. впервые была внедрена действительно полезная методика антисептики, имевшая реальную научную основу, поначалу многие врачи активно сопротивлялись ее распространению. К тому моменту, когда клинические испытания новых лекарств стали общепризнанной практикой, уже вовсю шел XX в. Врачи давно научились распознавать симптомы различных заболеваний, и для некоторых из них нашли эффективные лекарства – как, например, кора перуанского хинного дерева против малярии. Они знали, как готовить анальгетики, опиаты, рвотные, слабительные, снотворные средства или яды. Но до начала XX в. часто совершенно справедливо отмечалось, что заболевшему человеку, как правило, для его же пользы лучше было не обращаться к врачам.
Дело даже не в том, что у медицины не было никакой теории. Существовала так называемая «гуморальная теория», или учение о «четырех соках человеческого тела» – крови, лимфе, черной желчи и желтой желчи, которые влияют на характер человека и заставляют его быть сангвиником, флегматиком, меланхоликом или холериком. Гуморальная теория появилась во времена классической Древней Греции и была придумана Гиппократом или его коллегами, авторство трудов которых приписывали Гиппократу. Как замечал в гораздо более позднюю эпоху поэт Джон Донн в сонете «С добрым утром»: «Есть смеси, что на смерть обречены», имея в виду эту теорию. Учение о соках тела было развито в древнеримский период Галеном из Пергама, чьи сочинения приобрели огромное влияние сначала в арабском мире, а затем в Европе в начале II тыс. н. э. Мне не известно ни об одной попытке экспериментально обосновать гуморальную теорию в тот период, когда она считалась общепринятой. До наших дней гуморальная теория сохранилась в аюрведе, традиционной системе индийской медицины, но в ней выделяется только три «сока»: лимфа, желчь и прана.
Вдобавок к учению о соках европейские врачи вплоть до Нового времени должны были разбираться еще в одной теории, которая имела большое значение для медицины, – в астрологии. Забавно, что те доктора медицины, которые имели возможность изучать астрологию в университетах, пользовались гораздо большим престижем, чем простые хирурги, которые умели выполнять действительно полезные действия, например, совмещать и фиксировать сломанные кости, но до наступления более просвещенных времен не обучались в университетах.