Наша история начинается в 1944–1945 годах, когда Уилкинс работал над Манхэттенским проектом в Беркли, пытаясь выделить различные изотопы урана. Незадолго до этого он развелся с молодой женой-американкой и, наверное, по вечерам чувствовал себя одиноко. Именно в один из таких долго тянувшихся вечеров ему в руки попала тонкая книжка Эрвина Шрёдингера «Что такое жизнь?»
[156].
Уилкинс считает, что, именно прочитав эту книгу, он решил, что после войны обязательно займется изучением генов. Он читал также и об открытии группы Эвери. Таким образом, уже в 1946 году, основываясь на гипотезах Шрёдингера и результатах группы Эвери, Уилкинс четко сформулировал для себя революционную мысль: ДНК является носителем наследственности.
Большой удачей для него стал переезд в 1947 году вместе со своим руководителем, знаменитым Джоном Рэндоллом, в Лондон, где они начали работать в Королевском колледже. Рэндолл не только заведовал отделением физики, но и сумел наладить отношения с суровым и очень консервативным Советом по медицинским исследованиям (СМИ), от которого зависело финансирование первой в Англии биофизической лаборатории. До ее создания биологи, врачи и даже биохимики считали, что в медицинских исследованиях физики совершенно бесполезны. На самом деле вполне вероятно, что члены СМИ согласились поддержать инициативы Рэндолла не потому, что ожидали каких-то особых результатов, а потому, что увидели возможность так поблагодарить Рэндолла от имени всей медицинской общественности за спасение Англии от разрушения бомбардировщиками люфтваффе — все знали, что Рэндолл был одним из изобретателей многорезонаторного магнитрона, ключевого элемента радаров.
Таким образом, начиная с 1947 года Рэндолл выполнял две функции: заведовал отделением классической физики в Королевском колледже и курировал отделение биофизики, финансируемое СМИ.
А стать заместителем директора отделения биофизики Рэндолл пригласил молодого Мориса Уилкинса (ему был тогда тридцать один год). Рэндоллу нравилось, чтобы ученые, работавшие под его началом, были не только умными, но и лояльными. Уилкинс, с которым он общался еще до войны в Бирмингеме и после войны в Сент-Эндрюсе, оказался идеальным заместителем. Следует отдать должное Рэндоллу: он знал, что Уилкинс считает необходимым исследовать структуру ДНК, чтобы понять, каким образом она переносит генетическую информацию, и благосклонно отнесся к этой идее.
Несмотря на то что руководство двумя организациями занимало почти все его время, Рэндолл по-прежнему стремился лично участвовать в исследовательской работе. Он решил заняться изучением физической структуры луковицеобразной головки сперматозоида, в которой, как он знал, сосредоточено основное количество нуклеопротеина. Прежде всего он начал изучать головку сперматозоида под электронным микроскопом. В 1950 году он попросил студента-дипломника Реймонда Гослинга исследовать структуру головки того же сперматозоида с применением рентгеновской спектрографии. На тот момент Гослинг практически ничего не знал об этой методике, однако один из самых талантливых физиков в лаборатории Рэндолла, Алекс Стоукс, немного разбирался в технике изучения разных химических субстанций с помощью рентгеновских лучей. Рэндолл попросил его познакомить Гослинга с этой почти неизвестной дисциплиной на стыке физики и химии.
Гослинг, быстро освоив азы рентгеновской дифрактографии, был вынужден признать, что имеющееся в его распоряжении устаревшее оборудование не позволяет добиться удовлетворительного качества фотодиаграмм головок сперматозоидов. От безысходности он попросил у Уилкинса немного материала ДНК, чтобы сравнить рентгеновские дифрактограммы ДНК с полученными им немногочисленными дифрактограммами сперматозоидов.
Уилкинс получил небольшое количество ДНК вилочковой железы теленка от швейцарского физика Рудольфа Зигнера — тот так гордился чистотой и физической целостностью полученной им ДНК, что в мае 1950 года привез ее образцы в Лондон на встречу с коллегами-учеными. Уилкинс стал одним из тех, кому посчастливилось получить драгоценную субстанцию.
Тот факт, что Уилкинс получил в свое распоряжение столь тщательно выделенную ДНК, можно считать невероятной удачей. Если бы к нему в руки не попал именно этот образец, история открытия структуры ДНК могла бы пойти по совершенно иному пути. Уилкинс располагал и другими образцами ДНК, но именно ДНК Зигнера позволила ему выделить единичные, тончайшие, длинные волокна из общей желеобразной массы ДНК с помощью простой стеклянной палочки.
Поскольку вопрос о том, какого рода картинку можно получить при исследовании ДНК с помощью рентгеновских лучей, интересовал Уилкинса куда больше, чем Гослинга, он согласился дать Гослингу тонкое волокно ДНК. Первая дифрактограмма, полученная Гослингом, оказалась очень плохого качества, но это не обескуражило Уилкинса. Он прекрасно знал, что еще в 1939 году У. Т. Астбери, а затем, в 1947 году, С. Фурберг с помощью этой методики выяснили несколько важных фактов относительно физического расположения молекул, образующих огромную макромолекулу ДНК. Астбери определил, что расстояние между нуклеотидами в ДНК составляет 3–4 ангстрема, а Фурберг даже предположил, что ДНК может иметь спиралеобразную структуру.
В конце концов, именно Гослинг нашел способ получения хорошей рентгеновской диаграммы ДНК: он собрал вместе тридцать пять тончайших волокон ДНК, полученных Уилкинсом. Это произвело впечатление не только на Уилкинса, но и на Стоукса и, вероятно, на Рэндолла. Не исключено, что именно первая дифракционная фотография заставила Рэндолла весной 1950 года предложить трехлетнюю стипендию Розалинд Франклин. Рэндолл знал, что Франклин — опытный специалист по рентгеновской кристаллографии; Уилкинса и Гослинга можно было в лучшем случае назвать умными любителями в этой изящной, но тогда довольно-таки экзотичной области науки. Позже мы расскажем о Розалинд Франклин более подробно.
К сожалению, в середине 1950-х годов, как раз в то время, когда Гослинг начал поставлять Уилкинсу и Стоуксу для анализа дифракционные диаграммы вполне удовлетворительного качества, Британское адмиралтейство попросило Рэндолла вернуть одолженный ему рентгеновский аппарат. Впрочем, это событие, случившееся в конце лета, не сильно расстроило Уилкинса. Он резонно полагал, что они с Гослингом смогут использовать рентгеновский аппарат, принадлежавший другой исследовательской группе Королевского колледжа, но при этом его не радовала необходимость подвергать пучки волокон ДНК рентгеновскому облучению. Он понимал, что для определения структуры ДНК необходимо получить рентгеновскую дифракционную диаграмму не пучка волокон, а одного-единственного волокна ДНК. Для этого требовалось добиться резкого сужения рентгеновского пучка и сконструировать миниатюрную камеру.
Уилкинсу и Гослингу повезло: ученый-беженец из Германии Вернер Эренберг, работавший вместе со своим коллегой Уолтером Спиром в Колледже Биркбека, как раз изобрели рентгеновский аппарат, который они назвали микрофокусной генераторной лампой. Этот прибор обладал способностью фокусировать рассеянные пучки рентгеновских лучей и делать их очень узкими. Именно это, как понимал Уилкинс, и требовалось для получения удовлетворительных дифракционных диаграмм при рентгеновском облучении одного крохотного волоконца ДНК. Гослинг лично отправился в Биркбек и получил от Эренберга бесценный прибор.