Сыграл самого себя в фильме Эррола Мориса 1997 г. «Быстро, дешево и неуправляемо».
Мартин Форд: Еще работая в MIT, вы основали компанию iRobot. Сейчас это крупнейший дистрибьютор коммерческих роботов. Как это получилось?
Родни Брукс: iRobot я основал в 1990 г. совместно с Колином Энглом и Хелен Грейнер. Первые 14 бизнес-моделей оказались неудачными, но в 2002 г. мы нашли пару работающих вариантов. Во-первых, мы решили производить роботов для военных. Эти роботы применялись в Афганистане для осмотра пещер. Позднее во время афганских и иракских конфликтов примерно 6500 наших роботов использовались в качестве саперов.
Тогда же, в 2002 г., мы начали выпуск робота-пылесоса Roomba. К настоящему моменту продано уже более 20 млн единиц. А в 2017 г. годовой доход компании составил 884 млн долларов. Можно сказать, что это самый успешный робот-пылесос из когда-либо поставляемых на рынок. В его основе лежит интеллект насекомого, разработкой которого я начал заниматься еще в 1984 г. в MIT.
В 2010 г. я покинул MIT и основал компанию Rethink Robotics, создающую промышленных роботов. На сегодняшний день они используются на тысячах предприятий. В отличие от множества других роботов, они совершенно безопасны и их не нужно изолировать. Более того, программное обеспечение Intera 5 позволяет роботу написать программу, реализующую то, что ему показали. Это графическая программа, которая выводит деревья поведения. При желании пользователь может ими манипулировать, внося в предложенный роботом план свои коррективы. Наши роботы используют тактильную обратную связь и зрение и работают по всему миру круглые сутки.
М. Ф.: Как возник ваш интерес к робототехнике и ИИ?
Р. Б.: Мое детство прошло в Аделаиде, в Южной Австралии. В 1962 г. мама нашла две американские детские энциклопедии из серии «Что есть что». Одна называлась «Электричество», другая – «Роботы и электронный мозг». Остаток детства я провел, используя сведения из этих энциклопедий для исследований и попыток создать интеллектуальный компьютер и, в конечном итоге, робота.
В Австралии я получил степень бакалавра математики и начал работать над кандидатской диссертацией по ИИ, но понял, что в стране нет отделов computer science. Я подал документы в три вуза, в которых, как я слышал, проводились исследования в области ИИ. Из MIT пришел отказ, а вот Университет Карнеги – Меллона и Стэнфорд были готовы меня принять. Я выбрал Стэнфорд, потому что он ближе к Австралии.
В 1977 г. началась моя работа над диссертацией по компьютерному зрению под руководством Тома Бинфорда. Затем была научно-исследовательская деятельность в Университете Карнеги – Меллона и работа в MIT, пока в 1983 г. я не вернулся в Стэнфорд в качестве кандидата на штатную должность в профессорско-преподавательском составе. Через год я стал преподавателем в MIT, где проработал 26 лет.
Именно во время первой стажировки в MIT я начал работать над интеллектуальными роботами. К моменту моего возвращения в 1984 г. я понял, как мало достигнуто в моделировании восприятия роботов. Меня вдохновили насекомые, которые со своими сотнями тысяч нейронов превосходили любого из наших роботов. Я взял их интеллект за основу для своей модели, которой занимался в течение нескольких лет.
Затем я руководил основанной Марвином Минским Лабораторией ИИ. Со временем ее объединили с Лабораторией computer science, сформировав CSAIL.
М. Ф.: Каким из своих достижений вы гордитесь больше всего?
Р. Б.: В марте 2011 г. в Японии случилось землетрясение, и приливная волна вывела из строя АЭС «Фукусима». Примерно через неделю мы узнали, что на территорию станции не могут доставить роботов, которые должны произвести осмотр и выяснить, что произошло. За 48 часов из iRobot доставили шесть роботов и обучили местную техническую команду ими управлять. Позднее мы узнали, что именно благодаря нашим роботам удалось остановить реакторы.
М. Ф.: Я помню эту историю. Я тогда сильно удивился, ведь считалось, что в Японии самые передовые разработки в области робототехники.
Р. Б.: Тогда мы все получили наглядный урок. Дело в том, что пресса представляла японские разработки более совершенными, чем они есть на самом деле.
Тысячи наших роботов в течение девяти лет применялись в зонах боевых действий. Красивым внешним видом они похвастаться не могли, функциональность на базе ИИ практически отсутствовала, но они реально работали. Большую часть своей жизни я объяснял людям, как они заблуждаются, когда после просмотра видеороликов думают, что вот-вот начнутся крупные перемены, потому что роботы займут все рабочие места и наступит массовая безработица.
Если 30 лет назад в компании Rethink Robotics не было демонстрационных образцов; наивно думать, что уже завтра мы сможем показать готовый продукт. Переход от моделей, работающих в лабораторных условиях, к реальному продукту занимает много времени. Сейчас публика восторгается беспилотными автомобилями. Но мало кто помнит, что первый автомобиль, который автономно проехал по автостраде 10 миль со скоростью более 55 миль в час, появился в 1987 г. недалеко от Мюнхена. Автомобиль, в котором водитель пользовался только педалями и совсем не трогал руль, в первый раз проехал от одного побережья США до другого в 1995 г. в рамках проекта No Hands Across America. Означает ли это, что завтра мы увидим серийные беспилотные автомобили? Нет, для их разработки требуется много времени, а люди переоценивают скорость внедрения подобных технологий.
М. Ф.: То есть вы не согласны с законом ускоряющейся отдачи Курцвейла? Вы не верите в постоянное ускорение прогресса?
Р. Б.: Глубокое обучение дает фантастические результаты, и люди со стороны искренне воспринимают это как чудо. Разговоры об экспоненциальном росте начались с закона Мура, но постепенно этот закон перестает работать, потому что нельзя до бесконечности делить пополам место на кристаллах интегральных схем. Зато постепенно возобновляются работы над компьютерной архитектурой. В течение 50 лет никто не мог позволить себе делать что-то необычное, потому что его сразу же обогнали бы конкуренты. А сейчас мы вступаем в эру компьютерной архитектуры.
Заключительная часть вышедшей в 1965 г. статьи Мура The Future of Integrated Electronics («Будущее интегрированной электроники») посвящена случаям, в которых его закон неприменим. Например, он не работает при аккумулировании энергии.
Десять лет назад на этом обожглись венчурные инвесторы из Кремниевой долины, которые были уверены, что закон Мура работает везде, в том числе и в зеленых технологиях. Но зеленые технологии опираются на объем и энергию. Это не та ситуация, когда на физически вдвое меньшем пространстве все равно можно хранить все тот же объем информации.
Фундаментальный для глубокого обучения метод обратного распространения разработан еще в 1980 гг. А фантастические результаты с его помощью были получены через 30 лет. А тогда, в 1980-х гг., от этого метода хотели отказаться, потому что он ничего не давал. По этой причине отказывались от сотен вещей. Но случилось так, что в комбинации с ограничениями на значения весов, увеличением числа слоев и ростом вычислительных ресурсов метод обратного распространения дал интересные результаты.