Строение клетки прокариот: 1 – клеточная стенка; 2 – клеточная мембрана; 3 – рибосомы; 4 —кольцевая молекула ДНК в цитоплазме; 5 – складки наружной мембраны; 6 – жгутики
Некоторые бактерии способны в неблагоприят-ных условиях отращивать особо толстую оболочку и «впадать в спячку». Такие «спящие» бактерии называются цистами. Другие – создают внутри себя толстостенную капсулу, содержащую в «сжатом» виде копию материнской клетки. Это образование называется эндоспорой. В случае всякого рода неприятностей носители эндоспор гибнут, но сами споры могут сохранять жизнеспособность в самых невообразимых условиях десятки, сотни, и даже тысячи лет, выжидая, пока судьба повернется к ним лицом.
Внутреннее содержимое прокариотной клетки – вода, белки, углеводы, нуклеиновые и рибонуклеиновые кислоты – вся сложная смесь, необходимая для биохимической кухни, обеспечивающей жизнь и размножение бактерии. Но вот внутренних мембран в прокариотных клетках нет и, соответственно, нет и органелл – митохондрий, пластидов, эндоплазматической сети и самого ядра. Большинство реакций синтеза идет на плазматической мембране. Все это не значит однако, что метаболизм у прокариот менее сложен, чем у эукариот, у которых есть и ядро, и митохондрии и все прочее. Мало того, в области синтеза прокариоты способны на такие штуки, которые недоступны их потомкам, эукариотам. Например, только прокариоты (не все) могут фиксировать атмосферный азот. Поскольку азот – одна из важнейших составляющих белковых молекул, то существование всех остальных организмов планеты зависит от азотфиксирующих бактерий. Серы в живых организмах содержится, конечно, меньше, чем азота. Но и сера необходимый компонент ряда аминокислот и, соответственно, белков. И ни один живой организм, кроме прокариот, не может использовать серу в каком-либо ином виде, кроме как в виде солей серной кислоты – сульфатов. А практически все сульфаты, находящиеся в почвах естественных экосистем – продукт деятельности прокариот. И, наконец, только среди прокариот есть создания, способные извлекать энергию из минеральных веществ, таких, как азот, сера, соединения железа, водород, сероводород.
Некоторые прокариоты неподвижны, они разносятся движением воды и воздуха и их благополучие зависит от счастливого случая. Но многие способны активно передвигаться. Некоторые спирохеты и вибрионы передвигаются за счет изгибов тела. Есть бактерии, которые выделяют обильную слизь и волнообразными движениями оболочки гонят ее назад, создавая своего рода «реактивную тягу». Но есть у прокариот и специальные органы передвижения – жгутики. У эукариотных клеток жгутики – обычная вещь. Но жгутики бактерий устроены совершенно иначе. Длина жгутика может превышать длину бактериальной клетки и состоит этот жгутик из извитой молекулы белка. Эта молекула несет на одном конце своего рода кольцо, которое расположено в особой белковой «муфте» в клеточной оболочке. За счет разности электрических потенциалов в муфте и кольце жгутик вращается по тому же принципу, как сердечник электромотора. Это совершенно уникальный случай, когда живое существо использует принцип колеса. Скорость движения бактерий, обладающих жгутиками, порядка 20 микрон в секунду – весьма приличная скорость, аналогичная скорости 20–30 метров в секунду (более 70 км/час) для лошади.
Как-то принято считать, что общественная жизнь и коллективные действия – удел существ высокоразвитых. На самом же деле склонность к объединению обнаруживается уже у прокариот. Миксобактерии – организмы, двигающиеся «реактивным скольжением» в собственной слизи. Они вполне способные вести одиночную жизнь, каковую и ведут сплошь и рядом в почве, в разлагающихся растительных остатках и в мелких лужах. Однако чаще они встречаются скоплениями. Такое скопление – тонкая слизистая пленка, в которой содержатся тысячи и миллионы бактерий – согласованно движется по поверхности субстрата и, встретив что-либо съедобное, накрывает собою и переваривает при помощи дружно выделяемых ферментов. Попав в неблагоприятные условия, такое скопление стягивается и выпячивается, сначала бугорком, а потом этот бугорок превращается в деревце, на ветвях которого сидят округлые «плоды». Размер «деревца» не так уж и мал, «деревце» может достигать миллиметра в высоту. Ствол и ветви состоят из огромного количества погибших бактерий, а плодовые тела содержат споры – часть членов колонии, впавших в спячку до лучших времен.
Гастрономические причуды
Форма клетки, строение клетки, способ передвижения, способ размножения – разнообразие всех этих признаков и свойств у прокариот, в общем, невелико. С точки зрения нормального человека, привыкшего классифицировать объекты по их строению, разложить прокариот по полочкам не составляет труда. Увы, это приятное заблуждение профана. Другой такой запутанной области, как систематика прокариот, в естественных науках, пожалуй, не существует. Дело в том, что привычные мерки, с которыми систематики подходят к грибам, паукам, крокодилам и прочим эукариотам, в мире прокариот не годятся. Разнообразие эукариот – это действительно в основном разнообразие строения, биохимическая же основа у всей этой публики одинакова до противного. А вот у прокариот – все наоборот. Их разнообразие – это разнообразие биохимических процессов и, соответственно, разнообразие процессов питания и дыхания.
Прежде всего прокариоты способны получать энергию не двумя, а тремя разными способами: использовать энергию солнечного света (фототрофы); использовать энергию окисления минеральных веществ (хемотрофы); получать энергию за счет окисления органических веществ (органотрофы).
Изучение прокариот продвигается медленней, чем хотелось бы, как раз потому, что они способны существовать в самых немыслимых условиях. От дохлой прокариоты бактериологу мало пользы, поскольку внешне все они довольно однообразны. А вот чтобы изучить особенности их обмена, их нужно вырастить в культуре. А вы представляете себе, что такое создать культуру организмов, живущих в абсолютной темноте, при давлении в 500 атмосфер, питающихся водородом и требующих температуры 200 °C? Именно поэтому, например, анаэробные бактерии до сих пор изучены существенно хуже кислородных, а хемосинтетики – хуже органотрофов. Иной раз у бактериологов просто фантазии не хватает, чтобы создать условия, в которых будет расти какой – либо вид бактерий. И потому эти бактерии науке до сих пор не известны.
Среди фототрофов есть автотрофы, которые синтезируют органику из минеральных соединений. Одни производят углеводы из углекислого газа и воды, подобно зеленым растениям. А есть и такие, которые вместо воды пользуются совершенно другими соединениями, например сероводородом. Ну, это еще куда ни шло. Так ведь некоторые фототрофы используют в качестве источника углерода углекислый газ, но источником водорода вместо воды сероводорода или другого минерального соединения у них служат спирты или органические кислоты. То есть они «фото», но уж; никак не «авто», поскольку нуждаются в готовой органике. Для этой публики придумано название «фотогетеротрофы», хотя с гетеротрофными эукариотами все это имеет очень немного общего. Мало того. Есть среди фототрофных прокариот совершенно уникальные существа, которые используют энергию солнечного света не для синтеза топлива, а только для «зарядки» АТФ, а питательные вещества потребляют готовые. Эти создания настолько не лезут ни в какие ворота, что для их способа питания-дыхания даже названия соответствующего не смогли придумать.