
Онлайн книга «Наука. Величайшие теории. №4. Кеплер. Движение планет. Танцы со звездами»
![]() Чтобы оценить гармонию звука, необходимы как минимум два тона, образующие созвучие. При этом красота музыки, ее гармония улавливается и создается не музыкальным инструментом, а душой, которая наделена божественной чувствительностью и способна постичь гармонию. Даже необразованный человек, даже некоторые животные способны понять красоту музыки, потому что каждая созданная Богом душа уже содержит чистую гармонию и радуется, встречая эту гармонию в мире. Кеплер считал, что каждой планете соответствует своя мелодия. Отношению чисел, лежащему в основе музыкального интервала, соответствует отношение максимальной и минимальной угловой скорости планеты. Он говорил, что музыка несет в себе божественную гармонию, однако высшая музыка, «музыка сфер», может быть постигнута только интеллектом или «чистыми душами и, в некотором роде, самим Богом». Когда изливается мелодия небес, звучит божественная музыка. Иоганн Кеплер Нечто подобное происходило и с геометрией. Аристотель (384-322 год до н. э.) говорил, что такой фигуры, как круг, в реальности не существует – на эту мысль его наталкивали неидеальные очертания предметов и фигур в реальности. Кеплер, напротив, полагал, что круг – это концепт, который существует в душе изначально, потому что он предшествует миру, и человек постигает его благодаря своему подобию с Богом. Прочитав Евклида, человек заново встречается с тем, что он уже знает благодаря своей природе. Так, очень давно было открыто, что квадрат длины стороны квадрата равен половине квадрата его диагонали. Хотя книга Кеплера в целом полна фантазий, в «Гармонии мира» можно найти настоящие сокровища, такие как третий закон Кеплера, связанный с числовыми отношениями «музыки сфер». Кеплер называл познаваемыми многоугольниками те правильные многоугольники, которые можно было построить с помощью циркуля и линейки. К ним относятся, как он считал, треугольник, квадрат и пятиугольник, а также шести-, четырех- и десятиугольник. Однако в итоге познаваемых многоугольников оказывалось слишком много, так, многоугольник с 15 сторонами тоже был правильным и познаваемым, а позже Гаусс доказал, что к этой группе можно отнести многоугольники с 17 и 257 сторонами. Таким образом, теория Кеплера пошатнулась, и ученый начал искать критерий, который помог бы ограничить количество многоугольников и соотнести фигуры с нотами. Однако это ему не удалось, и тогда Кеплер задался вопросом: с помощью каких правильных многоугольников можно полностью замостить поверхность в окрестности некоторой точки? Кажется, что он думал о такой молекулярной форме, как фуллерены. ФУЛЛЕРЕНЫ Фуллерены – это чрезвычайно стабильные молекулы, состоящие из большого количества атомов углерода. Самый известный фуллерен, С60, сформирован 60 атомами и также известен как бакминстерфуллерен. Лучшим примером фуллерена в реальном мире будет обычный футбольный мяч. Он состоит из шестиугольников, стороны которых являются также сторонами пятиугольников, чьи стороны, в свою очередь, являются сторонами шестиугольников. В результате получается почти идеальная сфера из шести- и пятиугольников. Форма футбольного мяча совпадает с формой фуллерена С60. Также необыкновенно красивы фуллерены с луковичной структурой. Эти образования часто встречаются в межзвездном пространстве и особенно в планетарных туманностях. Они были обнаружены в Магеллановых Облаках, что доказала группа Сусанны Иглесиас-Грот, согласно исследованию которой фуллерены могут составлять до 25% межзвездной материи и вызывать космическое микроволновое реликтовое излучение. ![]() Фуллерен, состоящий из пяти- и шестиугольников, имеет практически сферическую поверхность. После некоторых размышлений Кеплер решил, что многоугольники и многогранники имеют мистические свойства, и открыл два правильных многогранника из так называемых звездчатых. Гораздо позже, в 1810 году, Луи Пуансо (1777-1859) заново открыл эти два многогранника и еще два новых, а в 1811-м Огюстен Луи Коши (1789-1857) доказал, что других правильных звездчатых многогранников, помимо этих четырех, не существует (рисунок 1). Чтобы представить, что такое правильный звездчатый многогранник, вообразим двенадцатигранник и на каждой из его граней поставим пятиугольную пирамиду такой высоты, что длина ее ребер будет равна стороне исходного двенадцатигранника. Мы получим многогранник, все грани которого – равные треугольники. Это один из четырех правильных звездчатых многогранников. По Кеплеру, Земля имеет душу и наделена врожденной чувствительностью, которая позволяет ей распознавать аспекты других планет, то есть их взаимное расположение, и реагировать на них. При этом из недр Земли исходит влага, влияющая на погоду. Кеплер считал, что существует связь между погодой и расположением планет, он искал эту связь и даже «нашел ее». Книга ученого полна постулатов, рожденных религиозной пылкостью автора, и иллюзий, поэтому она не является научной работой в современном смысле этого слова и поражает своей наивностью. Но несмотря на весь свой мистицизм, она опирается на точнейшие данные наблюдений. Не стоит забывать, что на момент публикации Harmonices mundi Кеплер располагал скрупулезными расчетами Тихо Браге. ![]() Большой двенадцатигранник ![]() Большой звездчатый двенадцатигранник ![]() Маленький звездчатый двенадцатигранник ![]() Большой двадцатигранник РИС. 1 ВСЕЛЕННАЯ И МУЗЫКА Еще пифагорейцы связывали музыку и ее гармонические созвучия с законами физики. И действительно, межзвездная среда – это не вакуум, она способна передавать волны Джинса, подобные звуковым. От звуковых эти волны отличаются тем, что при нарастании плотности и скорости прохождения волны после преодоления определенного порога гравитационные возмущения приводят к образованию звезд. Можно сказать, что волны Джинса сеют звезды на своем пути. Эти волны нельзя наблюдать с помощью радиотелескопа, но их можно увидеть. Собственно, это неудивительно: только ограничения человеческого зрения не позволяют нам наблюдать, как при прохождении обычного звука происходят мельчайшие изменения плотности, температуры или скорости на участках размером с длину волны. |