Книга Как работает мозг, страница 95 – Стивен Пинкер

Авторы: А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ч Ш Ы Э Ю Я
Книги: А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
Бесплатная онлайн библиотека LoveRead.me

Онлайн книга «Как работает мозг»

📃 Cтраница 95

* * *

Если бы мы полагались только на один из перечисленных анализаторов, мы бы срывали с деревьев кору вместо плодов и падали с обрывов. Каждый анализатор исходит из своих посылок, однако этим посылкам нередко противоречат посылки других анализаторов. Ракурс, форма, материал, освещение – все эти параметры тесно связаны, а нам нужно как-то распутать этот клубок и увидеть одну форму одного цвета, расположенную под одним углом и при одном освещении. Как же нам это удается?

Адельсон в соавторстве с психологом Алексом Пентландом придумал для своей иллюзии с зигзагами небольшую аллегорию. Вы – дизайнер, который должен создать декорации, выглядящие в точности как схема справа. Вы идете в мастерскую, где работают несколько специалистов, занимающиеся изготовлением декораций для театральных постановок. Один – художник. Второй – художник-осветитель. Третий – жестянщик. Вы показываете им картинку и просите сделать декорации, которые будут выглядеть точно так же. В сущности, они должны сделать то, что делает зрительная система: на основе изображения определить расположение реальных объектов и освещение, которое могло бы дать такое изображение.

Иллюстрация к книге — Как работает мозг [img_53.jpg]

Есть много способов, которыми мастера могут выполнить поставленную задачу. Каждый из них может справиться практически без помощи остальных. Художник может просто нарисовать композицию из параллелограммов на плоском листе металла и попросить художника-осветителя осветить ее одним прожектором:

Художник-осветитель может взять простой лист белой бумаги и установить девять светильников направленного света, каждый из которых будет оснащен специальным фильтром и теневой маской, и направить их таким образом, чтобы на листе получились девять параллелограммов (шесть из этих прожекторов показаны на рисунке на с. 278):

Иллюстрация к книге — Как работает мозг [img_54.jpg]

Жестянщик может изготовить из листов металла такие формы, которые при нужном освещении и наблюдении с определенной точки давали бы такое изображение:

Иллюстрация к книге — Как работает мозг [img_55.jpg]

Наконец, мастера могут создать такое изображение и путем совместной работы. Художник нарисует полоску посередине квадратного листа металла, жестянщик согнет его зигзагообразно, а художник-осветитель осветит его прожектором. Конечно, именно так действует мозг человека, чтобы интерпретировать изображение.

Перед нашим мозгом стоит такой же сложный выбор, как перед дизайнером в этой притче. Если мы допустим к работе ментального эксперта, формулирующего предположения о существовании окрашенных поверхностей, он может интерпретировать все особенности изображения как особенности нанесения краски: весь мир для него будет мастерски выполненной оптической иллюзией. Аналогичным образом специалист по освещению в нашей голове мог бы сказать, что весь мир – это кино. Поскольку такая интерпретация мира нежелательна, нужно каким-то образом не допустить, чтобы наши ментальные эксперты сделали подобные выводы. Один способ добиться этого – заставить их действовать в соответствии с исходными посылками, несмотря ни на что (цвет и освещение равномерны, формы правильны и параллельны), однако этот способ слишком радикален. Мир не всегда представляет собой кучу кирпичей в солнечный день. Иногда в нем встречается сложное освещение и окраска, и мы все равно их видим. Нам не нужно, чтобы эксперты отрицали сложность мира. Нам нужно, чтобы они предполагали существование в мире ровно такой степени сложности, как это есть на самом деле, и ничуть не больше. Проблема в том, как заставить их сделать это.

Вернемся к нашей притче. Предположим, что у отдела декораций ограниченный бюджет. Все специалисты назначают за свои услуги плату в соответствии с прейскурантом, который отражает сложность и нестандартность оказываемой услуги. Простые и стандартные операции стоят недорого; сложные и необычные операции дороже.

Иллюстрация к книге — Как работает мозг [img_56.jpg]

Нам нужен еще один специалист: руководитель, который решает, как распределить работу.

Иллюстрация к книге — Как работает мозг [img_57.jpg]

Для всех четырех решений стоимость работ будет разной. Вот смета стоимости:

Иллюстрация к книге — Как работает мозг [img_58.jpg]

Решение с руководителем – наименее затратное, потому что в этом случае услуги каждого специалиста используются оптимально и сэкономленных денег оказывается более чем достаточно, чтобы оплатить услуги руководителя. Мораль в том, что работой специалистов нужно руководить, и делать это должен не обязательно гомункул или демон, а некая схема, позволяющая минимизировать затраты, при которой «дешево» будет означать «просто», а «просто» будет означать «вероятно». Из нашей притчи видно, что простые операции легче выполнить; в случае со зрительной системой это означает, что простые описания соответствуют более вероятной конфигурации объектов в реальном мире.

Адельсон и Пентланд воплотили свою аллегорию в жизнь, создав на компьютере модель зрительной системы, задача которой – интерпретировать сцены с нарисованными многоугольниками так, как это делает человек. Первым делом анализатор формы (который в программе выполняет роль жестянщика) ищет самую правильную форму, соответствующую изображению. Возьмем простую фигуру, изображенную на схеме ниже слева: люди видят ее как сложенный лист, наподобие развернутой книги.

Иллюстрация к книге — Как работает мозг [img_59.jpg]

Специалист – анализатор форм – пытается собрать трехмерную модель из полученного на входе изображения, показанного справа. В самом начале ему известно только то, что углы и края модели должны быть выровнены с точками и линиями на изображении; ему неизвестно, на какой глубине они находятся. Вершины модели – это шарики на штангах (как линии проекции), а соединяющие их линии – бесконечно эластичные струны. Специалист передвигает шарики по струнам, пока не получит форму, соответствующую следующим требованиям. Каждый многоугольник, составляющий фигуру, должен быть по возможности правильным; то есть его углы должны не очень сильно различаться. Например, если у многоугольника четыре стороны, специалист старается создать прямоугольник. Многоугольник должен по возможности лежать в одной плоскости, как если бы он представлял собой лист пластмассы, который сложно согнуть. Наконец, многоугольник должен быть как можно более компактным, а не вытянутым относительно линии взора – как если бы этот лист пластмассы было сложно растянуть.

Реклама
Вход
Поиск по сайту
Ищем:
Календарь