Книга Как вытащить из данных максимум. Навыки аналитики для неспециалистов, страница 25 – Джордан Морроу

Авторы: А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ч Ш Ы Э Ю Я
Книги: А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
Бесплатная онлайн библиотека LoveRead.me

Онлайн книга «Как вытащить из данных максимум. Навыки аналитики для неспециалистов»

📃 Cтраница 25

Обратите внимание на фильтрацию, которую обеспечивает эта таблица. Фильтрация данных позволяет нам получать нужные сведения гораздо быстрее. Или это не так? Давайте переформулируем: фильтрация позволяет нам все глубже и глубже погружаться в данные, чтобы найти эти сведения.

В рамках диагностического анализа разные сотрудники организации также могут работать с данными по-разному. Приведем несколько примеров.

● Топ-менеджеры. Руководители могут и должны играть важнейшую роль в определении причин, стоящих за появлением тех или иных данных. Рассматривая отчеты, сводки и другую информацию, топ-менеджеры анализируют ее с привлечением своего многолетнего опыта. Они ставят вопросы, высказывают идеи и активно участвуют в обсуждении. Главное для них – полноценно донести до технических специалистов свои мысли о причинах происходящего, а затем обратиться к ним за дальнейшими исследованиями.

● Аналитики. Демократизация данных предоставляет команде аналитиков доступ к огромному количеству информации. Аналитики могут строить визуализации, а затем проводить фильтрацию и другие манипуляции с данными, чтобы, проведя описательный анализ, увидеть, что произошло, и грамотно диагностировать ситуацию.

● Специалисты по обработке данных. Эти сотрудники тщательно изучают данные, чтобы найти все возможные «почему». Затем, опираясь на найденные причины, они строят прогнозы и модели (мы поговорим об этом подробнее, когда будем разбирать третий уровень аналитики).

Конечно, в организации не только эти сотрудники так или иначе работают с данными: эта работа на диагностическом уровне аналитики может принимать самые разные формы.

Третий элемент дата-грамотности – анализ данных: в нашем случае ее можно считать несколько избыточной. Анализ данных – суть диагностического анализа. Давайте вспомним наш гипотетический пример с врачом: он должен помочь пациенту и поставить диагноз. Сначала он ищет описательные признаки – симптомы, наблюдаемые внешне и описываемые пациентом. Затем, опираясь на свой опыт и знания, он предполагает диагноз. Чтобы подтвердить диагноз, он должен привлечь все свои профессиональные навыки. Так он постепенно выясняет, что же действительно случилось с пациентом.

То же самое должно происходить и в коллективе. Не у всех есть соответствующая подготовка, и не все способны провести полноценный диагностический анализ, но каждый сотрудник организации должен развивать навыки дата-грамотности, чтобы правильно отвечать все на тот же пресловутый вопрос «почему?». Работа с данными дает возможность каждому вносить свой вклад в общее дело: сотрудники совместно получают знания, на которых впоследствии будут основаны взвешенные и продуманные решения.

Иллюстрация к книге — Как вытащить из данных максимум. Навыки аналитики для неспециалистов [i_019.jpg]

И наконец, последний элемент дата-грамотности – общение на языке данных. Это обязательная часть: умение донести до других полученные знания помогает в принятии решений. Если коммуникация нарушена, организация не в состоянии принимать обоснованные решения. К сожалению, умение говорить на языке данных – или свободное владение данными – в мире аналитики встречается реже, чем хотелось бы, поэтому обучение дата-грамотности просто жизненно необходимо. На диагностическом уровне, как и на дескриптивном, анализ должен отвечать тем же критериям: быть простым, исчерпывающим и эффективным. Когда вы делитесь полученными результатами с другими, не нужно живописать весь процесс анализа поэтическим языком, говорите строго по существу. Свободное обращение с данными всех сотрудников позволяет организации создать подходящий план коммуникации и поддерживать сам процесс диагностического анализа от начала и до конца.

Можно ли привести примеры диагностической аналитики в действии? Конечно.

Пример 1

Один из лучших примеров использования дескриптивного и диагностического анализа – борьба со вспышкой холеры в Лондоне в 1854 году, о чем уже говорилось в главе 4 (см. рис. 6.5). Легенда гласит – а это, я настаиваю, именно легенда, поскольку со временем молва приукрашивает события, – что врач Джон Сноу с помощью визуализации данных помог остановить вспышку заболевания и предотвратить новую. Помимо того, что визуализация помогла сдержать болезнь, с ее помощью удалось сделать главное – подтвердить теорию, что вспышка была связана с загрязненной водой из водоразборной колонки. Так было опровергнуто ошибочное убеждение, будто холера передается по воздуху. Давайте рассмотрим эту визуализацию, чтобы еще лучше разобраться в двух первых уровнях аналитики.

Иллюстрация к книге — Как вытащить из данных максимум. Навыки аналитики для неспециалистов [i_020.jpg]

Во-первых, взгляните на рисунок и определите, что на нем изображено. Джон Сноу попросил нанести на карту все дома, где были отмечены случаи заболевания. Больше всего больных оказалось в районе Брод-стрит: там и располагалась колонка, из которой жители брали воду.

То, что написано в предыдущем абзаце, по сути и есть дескриптивный анализ. Я смог описать, что происходило и где происходило. Более глубокий анализ может выявить что-то еще, но сейчас нам интересен именно описательный метод. А вы, если хотите, можете провести дальнейший анализ карты – например, расположения пивоварен: высказывалось предположение, что на пивоварнях не было случаев заражения холерой, поскольку работники пили бесплатное пиво, а не воду.

Двигаясь по уровням аналитики, мы замечаем, что описательный анализ порождает новые вопросы: почему много случаев заболевания было отмечено в районе колонки на Брод-стрит? Так, слева особенно много отметок о случаях холеры. Масса случаев и вдоль самой Брод-стрит, но вдоль прилегающих улиц – уже меньше. Задаваясь вопросами, мы переходим на второй уровень аналитики – к использованию диагностических методов.

Имея перед глазами визуализацию данных о случаях холеры, мы погружаемся в диагностический анализ. Большое количество случаев холеры вокруг колонки? Повод для новых вопросов. Так или иначе, ответы ведут нас к колонке на Брод-стрит… И действительно: обнаружилось, что вода в колонке загрязнена. Через нее передавалась болезнь. Врача Джона Сноу можно считать одним из пионеров журналистики данных – когда в основе журналистского материала лежит обработка данных [33].

Пример 2

А теперь давайте обратимся к сфере продаж. Компании, работающие в самых разных отраслях, стремятся выводить на рынок новые продукты, привлекать клиентов и получать доход – это естественно. Есть ли польза от дескриптивной и диагностической аналитики для отделов продаж? Помогает ли работа с данными эффективно осуществлять продажи? Этот пример наглядно показывает, что польза, безусловно, есть. Знаю, что эту тему мы уже рассмотрели, но для начала сделаем шаг назад и вспомним про дескриптивную аналитику: что она может рассказать о потенциальных клиентах, их распределении по демографическим группам и о реальных показателях в сравнении со спрогнозированными.

Реклама
Вход
Поиск по сайту
Ищем:
Календарь