
Онлайн книга «Магия чисел. Моментальные вычисления в уме и другие математические фокусы»
![]() Будем рассматривать эту задачу как (100 + 7) х (100 + 11). Задав z = 100, a = 7, b = 11, наша формула даст: 100 (100 + 7 + 11) + 7 х 11 = 100 х 118 + 77 = 11 877. Я схематически изобразил решение так: ![]() Числа в скобках равны разностям между исходными числами и нашим подходящим «базовым числом» (здесь z = 100). Число 118 получено путем сложения 107 + 11 или 111 + 7. По законам алгебры, эти суммы эквивалентны, так как (z + a) + b = (z + b) + a. На этот раз без лишних слов решим еще один «ускоренный» пример: ![]() Метод работает великолепно! Теперь немного повысим ставки и возьмем большее базовое число. ![]() Хотя данный метод, как правило, используется для умножения трехзначных чисел, его также можно применить для задач типа «2 на 2». ![]() Здесь базовое число 70 умножается на 81 (78 + 3). В таких задачах даже действие на сложение обычно очень простое. Этот метод также применим, когда оба числа меньше базового. Как, например, в следующей задаче, где оба числа меньше 400. ![]() Число 383 получено путем вычитания 396 — 13 или 387 — 4. Данный метод также можно использовать и для задач типа «2 на 2», таких как следующие. ![]() В следующем примере базовое число по величине находится между перемножаемыми числами. ![]() Число 409 получено в ходе операций 396 + 13 или 413 — 4. Обратите внимание, что, поскольку числа –4 и 13 имеют противоположные знаки, из результата умножения необходимо вычесть 52. Поднимем ставки еще выше, до уровня, где второе действие требует умножения типа «2 на 2». ![]() Здесь обратите внимание на то, что первое действие в задаче (600 х 658) является хорошей оценкой ответа. Но наш метод позволяет перейти от оценки к точному ответу. ![]() Обратите также внимание, что во всех примерах сумма чисел, которые мы перемножаем в первом действии, такая же, как и исходные числа. Например, в задаче выше 900 + 829 = 1729, как и 876 + 853 = 1729. Это следует из равенства: z + [(z + a) + b] = (z + a) + (z + b) Поэтому, чтобы получить число, которое надо умножить на 900 (оно будет в диапазоне «800 плюс»), нужно всего лишь взглянуть на последние две цифры суммы 76 + 53 = 129, чтобы вышло 829. В следующем примере сложение 827 + 761 = 1588 подсказывает, что нужно перемножить 800 х 788, а затем из полученного результата вычесть произведение 27 х 39. ![]() Этот метод настолько эффективен, что если задача типа «3 на 3», над которой вы думаете в настоящий момент, состоит из чисел, далеких друг от друга, то иногда можно видоизменить ее путем деления одного и умножения другого числа на одинаковое число (тем самым сблизив сомножители по величине). Например, задачу 672 х 157 можно решить следующим образом. ![]() Когда перемножаемые числа одинаковы, метод совместной близости генерирует такие же вычисления, как и в традиционном методе возведения в квадрат. ![]() Метод сложения Когда ни один из предыдущих методов не работает, я ищу возможность использовать метод сложения, в особенности если первые две цифры одного из трехзначных чисел просты в разложении. Например, в нижеприведенном примере 64 (первые две цифры числа 641) раскладывается как 8 х 8, поэтому я его решаю следующим образом. ![]() По тому же принципу в примере ниже 42 из числа 427 раскладывается как 6 х 7, поэтому можно использовать метод сложения, представив 427 в виде 420 + 7. ![]() |