
Онлайн книга «Путеводитель для влюблённых в математику»
Где в этой схеме находится ℝ? Мы выяснили, что
Тайна семьи множеств Вообразите: вы переступаете порог великолепного сооружения. За огромными воротами – мраморная лестница, ведущая в дивные палаты. Но стоит вам открыть дверь в подвал, как картина резко переменится. Там вы обнаружите ржавые трубы, искрящую проводку, бьющий в глаза электрический свет и разбитый пол, а может, и скопища тараканов. Подвал ужасен, но здания наверху без него не было бы. Это хорошая метафора для сооружения под названием «математика». Как мы уже говорили в начале главы, все объекты в математике (от чисел до кругов) можно определить через другие объекты, попроще. Рано или поздно мы дойдем до самого дна и обнаружим объект, через который объясняются все другие. Это и будет множество. Мы определили множество как набор объектов [89], но не сказали, что такое набор (в общем-то, это просто другое слово вместо «множества»), и не задались вопросом, какого рода объекты мы собираем вместе (и даже не дали определение объекта). Как нам выпутаться из этой ситуации? Вначале математики относились к ней довольно беззаботно. Говорили просто: есть такая штука – множество и есть свойство «быть элементом множества», которое обозначают символом, а раз так, то можно двигаться дальше [90]. Но все это рано или поздно приводит к затруднениям. Первое множество, приходящее нам в голову, – пустое множество. Там нет никаких элементов, и мы обозначаем его символом ∅. Мощность пустого множества равна нулю, и утверждение x ∈ ∅ ложно для любого x (потому что внутри ∅ ничего нет). Дальше нам приходит в голову, что множества можно характеризовать через свойства их элементов. Например, множество четных чисел задают следующим образом: ![]() Форма записи {x | свойства x} определяет множество всех объектов, обладающих указанными свойствами. А дальше возникает уйма сложностей. В начале XX века философ и математик Бертран Рассел [91] размышлял о множестве A = {x | x – такое множество, что x ∉ x}. Это множество всех множеств, чьими элементами не являются они сами. Например, пустое множество удовлетворяет условию: ∅ ∉ ∅, потому что пустое множество не содержит элементов. Таким образом, ∅ ∈ A. Дальше Рассел задал роковой вопрос: входит ли множество A во множество A? • Если ответ «да», то A∈A. Но тогда не выполняется условие попадания во множество A: оно не должно быть элементом самого себя. • Если ответ «нет», то A∉A. Тогда выполняется условие попадания во множество A, и оно является элементом самого себя. Если A∈A, то A∉A. Если A∉A, то A∈A. Но не может же такого быть, что A и входит, и не входит в A! Что-то пошло не так [92]. Одно из решений этого противоречия заключается в том, что множества A просто не существует. Нет его, и все тут. После работ Рассела подход к теории множеств претерпел существенные изменения. Четкие, ясные, применимые на практике правила закрепили, как формировать множества и какие операции с ними можно совершать [93]. Определение множества и ∈ входит в свод правил непрямым образом. Мы не объясняем, что́ это; мы просто описываем, как оно себя проявляет. Мы говорим, что есть такие вещи, как множества, у них есть определенные свойства, а еще есть правила, по которым мы с ними работаем. Эти правила не позволили парадоксу Рассела вздыбить свою безобразную голову, и противоречий больше не возникало. Но вернемся к вопросу: сколько всего действительных чисел? Мы знаем, что мощность множества положительных целых чисел равна
Эту главную для Гильберта проблему разрешили неожиданным образом. Короткий, но исчерпывающий ответ звучит следующим образом: «Может быть и так, и этак». Ну и ну! Математику ценят за то, что на все вопросы (обычно) находится точный ответ. «Может быть и так, и этак» разрушает определенность. Как с этим жить? Работы Курта Гёделя (1940-х годов) и Пола Коэна (1960-х) показали, что общепринятые правила аксиоматической теории множеств неполны и потому не позволяют ответить на поставленный вопрос. Точнее говоря, эти математики продемонстрировали: нельзя ни доказать, ни опровергнуть то, что существуют множества, чья мощность больше, чем ℤ+, но меньше, чем ℝ. Другими словами, можно принять или допущение
|