
Онлайн книга «Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики»
Буквальное значение слова «геометрия» — измерение Земли. Ирония в том, что если бы Евклид реально озаботился измерением треугольников на земной поверхности, он бы обнаружил, что евклидова геометрия не работает. Дело в том, что земная поверхность является сферой [28], а не плоскостью. В сферической геометрии, конечно, есть точки и углы, но далеко не очевидно, что в ней есть нечто подобное прямым линиям. Посмотрим, удастся ли придать какой-то смысл словам «прямая линия на сфере». Привычный способ описания прямой линии в евклидовой геометрии состоит в том, что это кратчайший путь между двумя точками. Если я захочу построить прямую линию на футбольном поле, то вобью в землю два колышка, соединю их леской и натяну ее как можно сильнее. Натягивание лески гарантирует, что линия будет самой короткой из возможных. ![]() Этот принцип кратчайшего пути между двумя точками можно легко распространить на сферу. Допустим, надо найти кратчайший путь между Москвой и Рио-де-Жанейро. Нам понадобится глобус, две кнопки и упругая нить. Воткнув кнопки в Москву и Рио, можно натянуть нить вдоль поверхности глобуса и определить кратчайший маршрут. Такие кратчайшие маршруты, подобные экватору и меридианам, называют большими кругами. Есть ли смысл называть их прямыми линиями в сферической геометрии? Да неважно, как мы их назовем. Важно то, как логически соотносятся между собой точки, углы и линии. Будучи кратчайшим путем между двумя точками, такие линии являются в некотором смысле наиболее прямыми из возможных линий на сфере. Корректное математическое название для таких путей — геодезические. Если на обычной плоскости геодезические являются обычными прямыми линиями, то на сфере геодезические — это большие круги. ![]() Большие круги на сфере Получив эту сферическую замену прямых линий, мы можем перейти к конструированию треугольников. Отметим на сфере три точки, скажем Москву, Рио и Сидней. Затем нарисуем геодезические, попарно соединяющие эти точки: геодезическую Москва — Рио, геодезическую Рио — Сидней и, наконец, геодезическую Сидней— Москва. В результате получится сферический треугольник. ![]() Сферический треугольник В планиметрии, если сложить углы любого треугольника, получится ровно 180 градусов. Но если внимательно присмотреться к сферическому треугольнику, то видно, что его стороны выпячиваются наружу, что делает углы большими, чем они были бы на плоскости. В результате сумма углов сферического треугольника всегда больше 180 градусов. Про поверхность, на которой треугольники обладают таким свойством, говорят, что она имеет положительную кривизну. Могут ли существовать поверхности противоположного свойства, а именно чтобы сумма углов треугольника была меньше 180 градусов? Пример такой поверхности — седло. Седловидные поверхности имеют отрицательную кривизну; геодезические, образующие треугольник на поверхности отрицательной кривизны, не выпячиваются, а, наоборот, втягиваются. ![]() Итак, независимо от того, способен наш ограниченный мозг визуализировать искривленное трехмерное пространство или нет, мы знаем, как экспериментально проверить его на кривизну. Ключом служат треугольники. Выберите любые три точки в пространстве, как можно туже натяните между ними нити, чтобы образовался трехмерный треугольник. Если сумма углов составляет 180° для любого такого треугольника, то пространство плоское, если нет — искривленное. Могут существовать геометрии намного более сложные, чем сферы и седла, — геометрии с беспорядочными холмами и долинами, имеющие области как с положительной, так и с отрицательной кривизной. Но правило для построения геодезических всегда остается простым. Представьте, что вы ползете по такой поверхности и все время держите нос прямо, никогда не поворачивая головы. Не оглядывайтесь; не заботьтесь, откуда вы пришли и куда направляетесь; просто тупо ползите вперед. Ваш путь окажется геодезической. Представьте себе человека в инвалидном кресле, пытающегося сориентироваться в пустыне среди песчаных дюн. Имея ограниченный запас воды, он должен выбраться оттуда как можно быстрее. Округлые холмы, седловидные перевалы и глубокие долины образуют участки ландшафта с положительной и отрицательной кривизной, и в целом совершенно не очевидно, куда лучше всего направить кресло. Человек считает, что высокие холмы и глубокие долины будут замедлять его движение, так что поначалу решает объезжать их. Механизм управления креслом прост: если замедлить одно колесо относительно другого, то кресло поворачивает в этом направлении. Однако через несколько часов человек начинает подозревать, что проезжает мимо тех же элементов рельефа, где уже был ранее. Попытки управления креслом привели к опасному случайному блужданию. Теперь он понимает, что лучшей стратегией было движение абсолютно прямо вперед, не поворачивая ни влево, ни вправо. «Езжай прямо, куда глаза глядят», — говорит он себе. Но как убедиться, что не сбился с курса? Ответ скоро становится очевидным. У кресла есть механизм, который фиксирует два колеса друг относительно друга, так что они крутятся как единая гантель. Зафиксировав колеса таким образом, он отправляется кратчайшим путем к краю пустыни. ![]() В каждой точке траектории путешественник движется по прямой линии, но в целом его путь выглядит сложной вьющейся кривой. Тем не менее она настолько пряма и коротка, насколько это возможно. Вплоть до девятнадцатого столетия математики не приступали к изучению новых типов геометрии с альтернативными аксиомами. Лишь немногие, такие как Георг Фридрих Бернхард Риман, задумывались над той возможностью, что «реальная» геометрия — геометрия реального пространства — может быть не строго евклидовой. Но только Эйнштейн первым отнесся к этой идее серьезно. В общей теории относительности геометрия пространства (или, более корректно, пространства-времени) становится вопросом для экспериментаторов, а не для философов или даже математиков. Математики могут сказать, какие типы геометрии возможны, но только измерения могут определить «истинную» геометрию пространства. |