Книга Достучаться до небес. Научный взгляд на устройство Вселенной, страница 76 – Лиза Рэндалл

Авторы: А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ч Ш Ы Э Ю Я
Книги: А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
Бесплатная онлайн библиотека LoveRead.me

Онлайн книга «Достучаться до небес. Научный взгляд на устройство Вселенной»

📃 Cтраница 76

Струи, как правило, оставляют видимые следы, поскольку некоторые частицы в них заряжены. Достигнув калориметра, струя отдает свою энергию. При помощи тщательных экспериментальных исследований, а также аналитических и компьютерных расчетов экспериментаторы выясняют свойства адронов, положивших начало каждой конкретной струе. И все же из‑за сильного взаимодействия и струй кварки и глюоны исследовать намного сложнее. В конце концов, вы не можете измерить кварк или глюон непосредственно, вы меряете лишь струю, частью которой он является. Именно поэтому большинство кварковых и глюонных струй не различимы между собой. Все они выделяют много энергии и оставляют множество треков (на рис. 42 можно увидеть схематическое изображение того, как детекторы распознают ключевые частицы Стандартной модели).

Иллюстрация к книге — Достучаться до небес. Научный взгляд на устройство Вселенной [img_40.jpg]

РИС. 41. Струи представляют собой летящие группы частиц, связанных сильным взаимодействием, возникающим вокруг кварков и глюонов. На рисунках показана их регистрация в трекерах и адронном калориметре. (Печатается с разрешения CERN’a.)


Даже после измерения свойств адронной струи очень трудно, если не невозможно, сказать, который из различных кварков или глюонов ее инициировал. Красивый кварк (Ь–кварк) — самый тяжелый кварк с тем же зарядом, что у нижнего кварка (и тем же, что у среднего по массе странного) — исключение из правила. Причина в том, что красивый кварк живет достаточно долго и успевает пролететь некоторое расстояние до распада. При этом расстояние невелико: распад происходит внутри трекера. Действительно: если частицы распадаются практически мгновенно после рождения, поэтому создается впечатление, что продукты их распада начинают свои треки непосредственно в точке взаимодействия, где столкнулись протоны. Красивые кварки, в отличие от других, живут достаточно долго (примерно полторы пикосекунды; этого хватает, чтобы пройти со скоростью света, с которой они летают, примерно полмиллиметра), чтобы начать трек на вполне различимом расстоянии от точки взаимодействия. Внутренние кремниевые детекторы регистрируют этот смещенный узел траектории, как показано на рис. 43.

Иллюстрация к книге — Достучаться до небес. Научный взгляд на устройство Вселенной [img_41.jpg]

РИС. 42. Обобщенная картина того, как частицы Стандартной модели распознаются в детекторах. Нейтральные частицы не оставляют следа в трекерах. Как заряженные, так и нейтральные адроны могут оставлять некоторое количество энергии в ECAL, но большую часть энергии выделяют в HCAL. Мюоны пролетают насквозь до внешнего детектора


Когда экспериментаторы восстанавливают трек от распада красивого кварка, то в обратном направлении он не приходит в точку взаимодействия—центр события. Вместо этого создается впечатление, что трек начинается в той точке внутреннего трекера, где распался красивый кварк; в этой точке наблюдается перегиб — переход от траектории прилетевшего туда красивого кварка и улетевших дальше продуктов распада [47]. Благодаря тончайшей сегментации кремниевых детекторов экспериментаторы имеют возможность рассматривать область, прилегающую к пучку, очень подробно и в значительном числе случаев успешно распознавать красивые кварки.

Иллюстрация к книге — Достучаться до небес. Научный взгляд на устройство Вселенной [img_42.jpg]

РИС. 43. Адроны, «сделанные» из красивых кварков, живут достаточно долго, чтобы оставить видимый трек в детекторе, прежде чем рассыпаться на другие заряженные частицы. При этом в кремниевом детекторе может образоваться перегиб трека, по которому, собственно, и распознают красивые кварки. На рисунке показан распад истинных кварков

Еще один тип кварка, выделяющийся среди прочих в экспериментальном плане, — истинный кварк (t–кварк); своей особостью он обязан большой массе. Истинный кварк—самый тяжелый из тех трех кварков, заряд которых равен заряду верхнего кварка (третий кварк этой группы называется очарованным). Истинный кварк примерно в 40 раз тяжелее красивого — самого тяжелого кварка с зарядом другого знака — и более чем в 30000 раз тяжелее верхнего кварка, обладающего таким же зарядом.

Истинные кварки достаточно тяжелы, чтобы продукты их распада оставляли различимые треки. При распаде более легких кварков продукты распада, как и первоначальная частица, движутся со скоростями, очень близкими к скорости света, и потому сливаются как будто в единую струю, даже если начало ей положили две или более отдельные частицы. С другой стороны, истинные кварки, если только они не чрезмерно энергичны, наблюдаемо распадаются на красивые кварки и W–бозоны (заряженные слабые калибровочные бозоны); наличие того и другого наглядно свидетельствует о присутствии истинного кварка. Считается, что благодаря своей массе истинный кварк наиболее тесно взаимодействует с частицей Хиггса и другими частицами, вовлеченными в физику слабых взаимодействий, в которой мы надеемся в скором времени разобраться. Свойства истинных кварков и их взаимодействий могут оказаться полезны для понимания фундаментальных физических теорий, на которых основана Стандартная модель.

В ПОИСКАХ ПЕРЕНОСЧИКОВ СЛАБОГО ВЗАИМОДЕЙСТВИЯ

Прежде чем закончить разговор о том, как распознаются частицы Стандартной модели, рассмотрим последнюю их группу — слабые калибровочные бозоны: два W и один Ζ, переносящие слабое ядерное взаимодействие. Слабые калибровочные бозоны отличаются той особенностью, что, в отличие от фотонов и глюонов, имеют ненулевую массу покоя. Надо сказать, что наличие массы у слабых калибровочных бозонов — частиц, передающих слабое взаимодействие — представляет собой достаточно серьезную фундаментальную загадку. Происхождением своим эти массы — как и массы других элементарных частиц, о которых говорилось в этой главе — обязаны механизму Хиггса, к которому мы перейдем в самом ближайшем будущем.

Из‑за своей тяжести W- и Ζ–бозоны долго не живут; они распадаются. Это значит, что слабые калибровочные бозоны, подобно истинным кваркам и другим тяжелым нестабильным частицам, можно распознать только через наблюдение за частицами, рождающимися в процессе распада. А поскольку любые новые тяжелые частицы тоже, вероятно, окажутся нестабильными, мы попробуем на примере распада слабых калибровочных бозонов показать еще одно интересное свойство распадающихся частиц.

W–бозон взаимодействует с любыми частицами, чувствительными к слабому взаимодействию (то есть со всеми частицами, о которых до сих пор шла речь). Это дает W–бозону множество вариантов распада. Он может распасться на любой заряженный лептон (электрон, мюон или тау–частицу) и соответствующее ему нейтрино. Его распад может также породить пару кварков — верхний и нижний или очарованный и странный, как показано на рис. 44.

Реклама
Вход
Поиск по сайту
Ищем:
Календарь