Книга Математическое мышление, страница 50 – Джо Боулер

Авторы: А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ч Ш Ы Э Ю Я
Книги: А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
Бесплатная онлайн библиотека LoveRead.me

Онлайн книга «Математическое мышление»

📃 Cтраница 50

Самооценку можно проводить на разных уровнях детализации. Учителя могут использовать в листах самооценки критерии, охватывающие урок или более длительный период, например учебный модуль, четверть и полугодие. Ниже приведены примеры критериев самооценки за более короткий и более длинный промежутки. Помимо них, ученикам необходимо предоставить время для размышлений о своем обучении, что они могут сделать во время урока, в конце урока или даже дома.

Лист самооценки из примера 8.1 предоставлен Лори Мэллет, замечательной учительницей третьего класса, с которой я работала. Лори принимала участие в летнем семинаре по профессиональному развитию, который я проводила и на котором мы рассматривали все способы стимулирования мышления роста. Она предлагает ученикам три варианта выбора.

ПРИМЕР 8.1. САМООЦЕНКА: МНОГОУГОЛЬНИКИ

Иллюстрация к книге — Математическое мышление [i_075.jpg]

Вместо утверждений, над которыми должны размышлять ученики, некоторые учителя (особенно те, которые учат детей младшего возраста) используют смайлики вроде тех, которые показаны на рис. 8.2.

Иллюстрация к книге — Математическое мышление [i_076.jpg]

Рис. 8.2. Смайлики для самоанализа


Оба варианта побуждают учеников подумать о том, что они уже изучили и что им нужно изучить.

Второй пример предоставила Лиза Хенри, опытный учитель старшей школы из Брукленда. Лиза преподает математику в старших классах уже 23 года. Четыре года назад она разочаровалась в системе оценок. Она знала, что ее оценки не отражают реальный уровень знаний учеников. Лиза перешла к оценке знаний по критериям, о которых она рассказала ученикам. Лиза любезно делится со всеми желающими теми утверждениями для самооценки, которые она составила для всего курса алгебры (пример 8.2). Ученики оценивают себя по этим критериям, а Лиза определяет, что они знают, а что нет, вместо того чтобы выставлять общую оценку. Лиза говорит, что теперь ей известно гораздо больше о знаниях и понимании учеников.

ПРИМЕР 8.2. АЛГЕБРА 1. САМООЦЕНКА

Раздел 1 — линейные уравнения и неравенства

• Я могу решить линейное уравнение с одной переменной.

• Я могу решить линейное неравенство с одной переменной.

• Я могу найти формулы для указанной переменной.

• Я могу решить уравнение с модулем с одной переменной.

• Я могу решить составное неравенство с одной переменной и представить его графическое решение.

• Я могу решить неравенство с модулем с одной переменной.


Раздел 2 — интерпретация взаимосвязей в математических выражениях

• Я могу использовать и интерпретировать те или иные компоненты математических формул.

• Я могу преобразовывать компоненты формул.

• Я могу определить, что собой представляет любая часть математического выражения.

• Я могу составить уравнение или неравенство с одной переменной, которое лучше всего описывает задачу.

• Я могу составить уравнение с двумя переменными, которое лучше всего описывает задачу.

• Я могу определить те значения, которые удовлетворяют уравнению, и обосновать свой выбор.

• Я могу использовать полученное решение в описываемой реальной задаче и обосновать свой выбор.

• Я могу построить график уравнения в системе координат с нужными обозначениями и в нужном масштабе.

• Я могу доказать, что любая точка на графике удовлетворяет уравнению, если в него подставить ее координаты.

• Я могу сравнить свойства двух функций, заданных графически, таблично или аналитически.


Раздел 3 — понимание функций

• Я могу определить, представляет ли функцию график, таблица или набор упорядоченных пар.

• Я могу расшифровать запись функции и объяснить, как аргумент согласуется с ее значением.

• Я могу преобразовать список чисел (последовательность) в функцию, сделав целые числа аргументами, а элементы последовательности — значениями функции.

• Я могу выявить основные свойства графика: отрезки, отсекаемые на координатных осях, возрастание или убывание функции, максимальное и минимальное значения и поведение функции на границах области определения, с помощью графика, таблицы или уравнения.

• Я могу объяснить, как график отображает область значений функции.


Раздел 4 — линейные функции

• Я могу вычислить и интерпретировать среднюю скорость изменения функции.

• Я могу построить график линейной функции и определить отрезки, отсекаемые на координатных осях.

• Я могу построить график линейного уравнения на координатной плоскости.

• Я могу продемонстрировать, что линейная функция имеет постоянную скорость изменения.

• Я могу найти ситуации, которые отображают одинаковую скорость изменения за равные промежутки и могут быть смоделированы с помощью линейных функций.

• Я могу построить линейную функцию на основе арифметической последовательности, графика, таблицы значений или описания соотношения.

• Я могу объяснить (с использованием подходящих единиц) значение таких понятий, как угол наклона прямой, отрезок, отсекаемый на оси y, а также другие точки на прямой, когда она моделирует реальное соотношение.


Раздел 5 — системы линейных уравнений и неравенств

• Я могу решить систему линейных уравнений графически.

• Я могу решить систему линейных уравнений методом подстановки.

• Я могу решить систему линейных уравнений методом исключения неизвестных.

• Я могу решить систему линейных неравенств графически.

• Я могу составить и представить в графическом виде набор ограничений для задачи линейного программирования и найти максимальное и (или) минимальное значение.


Раздел 6 — статистические модели

• Я могу описать центр распределения данных (среднее значение или медиану).

• Я могу описать разброс данных (межквартильный диапазон или среднеквадратичное отклонение).

• Я могу представить данные в виде диаграмм с числовой осью (точечных диаграмм, гистограмм и диаграмм размаха).

• Я могу сравнить распределение двух или более множеств данных, проанализировав их форму, центр и разброс, когда они нанесены на одну и ту же шкалу.

• Я могу интерпретировать особенности формы, центра и разброса множества данных в контексте задачи, а также объяснить влияние экстремумов.

Реклама
Вход
Поиск по сайту
Ищем:
Календарь