
Онлайн книга «Перспективы отбора»
У первого потомка нет ни одной работающей копии гена C, а второму не досталось рабочих копий гена A. Заметим, что при наличии митоза этой проблемы не было бы: оба потомка имели бы точно такой же генотип, как у родительской клетки, и жили бы припеваючи. Поскольку полиплоидность приводит к вырождению не сразу, а сначала дает сильное преимущество, она может стать своеобразной «эволюционной ловушкой» для прокариот в мутагенной среде. Если разрешить модельным микробам иногда при делении распределять хромосомы не поровну, то есть менять свою плоидность, то полиплоиды сначала быстро вытесняют моноплоидов, а затем сами деградируют и вымирают. Это происходит даже в том случае, если подавляющее большинство клеток в исходной популяции — облигатные моноплоиды и лишь немногие клетки способны иногда производить потомков, имеющих на одну хромосому больше. Полиплоидность распространяется как инфекция — и приводит популяцию к гибели. При тех же параметрах популяция, состоящая только из облигатных моноплоидов, может жить неопределенно долго. ![]() Четыре способа защиты полиплоидов от вырождения. Чтобы выжить, такие полиплоиды должны выработать специальные адаптации, замедляющие накопление вредных мутаций. Они могут использовать для этого как минимум четыре разные стратегии. Вот тут-то и начинается самое интересное. Дело в том, что все эти четыре способа защиты полиплоидных прокариот от вырождения подозрительно напоминают те или иные аспекты эукариотического секса. Первый способ — «циклы плоидности». Можно периодически сбрасывать уровень плоидности, например, делясь чаще, чем происходит репликация хромосом. Если заниматься этим достаточно интенсивно, то в популяции будет постоянно присутствовать (или периодически возникать) заметная доля моноплоидов, у которых все вредные рецессивные мутации проявляются в фенотипе и потому эффективно вычищаются отбором. Второй способ — внутригеномная рекомбинация, то есть перетасовка генетической информации между хромосомами. Есть два основных варианта такой рекомбинации. Первый вариант называется генной конверсией. В этом случае фрагмент одной хромосомы копируется в гомологичный участок другой, причем аллели, находящиеся на второй хромосоме, «затираются» аллелями первой. Интенсивная генная конверсия ведет к унификации копий генома. Любая новая мутация либо быстро затирается и исчезает, либо распространяется на все хромосомы, переходит в гомозиготное состояние и становится видимой для отбора. Моделирование показывает, что генная конверсия, если ее интенсивность существенно превышает темп мутагенеза, может спасти полиплоидную популяцию от вырождения. Полиплоидные галофильные и метаногенные археи активно используют генную конверсию, предположительно, именно для того, чтобы унифицировать свои хромосомы и тем самым защититься от вырождения. Эту стратегию, вероятно, с той же целью применяют и пластиды растений (они тоже полиплоидные и не имеют митоза). Второй вариант внутригеномной рекомбинации — кроссинговер. В этом случае гомологичные участки двух хромосом не затирают друг друга, а меняются местами. Кроссинговер не может ни уничтожить вредную мутацию, ни перевести ее в гомозиготное состояние. Поэтому сам по себе он бесполезен для полиплоидных микробов, но в сочетании с ГПГ дает сильный положительный эффект (см. ниже). Третий способ — интенсивный генетический обмен (ГПГ) между близкородственными клетками. Моделирование показывает, что горизонтальный перенос генов (такой, как на рис. 5.1) хорошо защищает полиплоидов от вырождения, особенно если осуществляется с высокой частотой. Полиплоидные археи действительно меняются друг с другом генами на полную катушку. Эволюционный эффект интенсивного близкородственного ГПГ в целом такой же, как у эукариотического секса (мы рассказывали об этом в книге «Эволюция. Классические идеи в свете новых открытий»). Интересно, что кроссинговер, бесполезный для популяций, не практикующих ГПГ, оказывается очень полезен для микробов, периодически заимствующих гены друг у друга. Польза, приносимая ГПГ, имеет ту же природу, что и польза, приносимая половым размножением: оба процесса позволяют отбору отделять полезные аллели от вредных, эффективно закрепляя первые и выбраковывая вторые (см. Исследование № 7). При этом ГПГ тем полезнее, чем чаще он происходит. При высоком темпе мутирования это особенно актуально. Однако у прокариотического ГПГ есть встроенный конструктивный дефект, не позволяющий этому процессу достигать оптимальной (то есть высокой) частоты. Дефект кроется в асимметричности («нечестности») прокариотического ГПГ, которую хорошо иллюстрирует рис. 5.1. На рисунке видно, что чужой (донорский) аллель B заместил и уничтожил аллель b в геноме реципиента. Ситуация, когда свои аллели систематически замещаются чужими, может оказаться эволюционно нестабильной. Чтобы понять это, нужно подумать о судьбе генов, влияющих на интенсивность (частоту) захвата чужой ДНК и замещения собственных аллелей чужими. Допустим, у такого гена есть два аллеля: один способствует ГПГ, другой препятствует. Какой из них победит в конкуренции? Моделирование показывает, что аллели, препятствующие ГПГ, могут распространяться в генофонде и вытеснять аллели, способствующие ГПГ, несмотря на всю пользу, которую получают от ГПГ отдельные организмы и популяция в целом. Ведь аллели, способствующие ГПГ, будут то и дело «затираться» конкурирующими аллелями, которые ГПГ блокируют. А вот в обратную сторону замещение происходить не будет — аллели, блокирующие захват чужой ДНК и замещение фрагментов своей хромосомы чужими, не будут затираться как раз потому, что они блокируют ГПГ. В результате аллели, препятствующие ГПГ, будут вести себя как «эгоистичные гены», наращивая свою частоту в генофонде, — несмотря на то, что это вредно для особей и популяции в целом. Могут ли полиплоидные микробы обойти это препятствие, чтобы получить возможность осуществлять межорганизменный генетический обмен с высокой частотой? По-видимому, да. Для этого им нужно, во-первых, начать обмениваться не кусочками хромосом, а целыми хромосомами, и во-вторых — отказаться от асимметричной генной конверсии, исключить «затирание» одних аллелей другими и использовать для перемешивания фрагментов хромосом только кроссинговер. Умеют ли полиплоидные археи меняться целыми хромосомами, точно не известно, но это представляется вполне вероятным, исходя из того, что известно о половом процессе у Haloferax. С кроссинговером, правда, возникает еще одна проблема: кольцевые хромосомы плохо для него подходят. При нечетном числе перекрестов они не могут нормально разойтись после рекомбинации и превращаются в одно большое кольцо. Поэтому, если вы хотите часто использовать кроссинговер, вам нужно отказаться от кольцевых хромосом и заменить их линейными. Идея о том, что линейные хромосомы понадобились эукариотам именно для частого кроссинговера, а не для чего-то еще, уже высказывалась ранее рядом специалистов, и с ней трудно спорить, учитывая, что во всех прочих отношениях кольцевые хромосомы удобнее. Четвертый способ, помогающий полиплоидным амитотическим микробам защититься от вырождения, — самый радикальный. Он состоит в том, чтобы изобрести митоз — механизм аккуратного и точного распределения хромосом по дочерним клеткам, гарантирующий, что каждый потомок получит ровно по одной копии каждой родительской хромосомы. Это моментально снимает все проблемы, связанные с накоплением сегрегационного груза. |