Книга Математика для взрослых. Лайфхаки для повседневных вычислений, страница 19 – Кьяртан Поскитт

Авторы: А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ч Ш Ы Э Ю Я
Книги: А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
Бесплатная онлайн библиотека LoveRead.me

Онлайн книга «Математика для взрослых. Лайфхаки для повседневных вычислений»

📃 Cтраница 19

Разность квадратов

Допустим, у вас есть квадратный блок почтовых марок размером 6 × 6. Кто-то оторвал от него несколько марок, оставив вам квадрат 4 × 4. Сколько марок забрали?

Иллюстрация к книге — Математика для взрослых. Лайфхаки для повседневных вычислений [i_153.jpg]

Нам нужно вычислить 62 − 42. Вычитание квадрата одного числа из квадрата другого называется разностью квадратов. В данном случае все просто, поскольку числа небольшие. Получаем 36 − 16 = 20. Однако есть более быстрый способ подсчета, который подходит для квадратов любых чисел.

Иллюстрация к книге — Математика для взрослых. Лайфхаки для повседневных вычислений [i_154.jpg]
Разность квадратов двух чисел равняется сумме этих чисел, умноженной на их разность.

Звучит довольно странно, однако вот что это означает: чтобы вычислить 62 − 42, сначала нужно узнать сумму двух чисел: 6 + 4 = 10. Кроме того, понадобится их разность: 6 − 4 = 2. Теперь умножаем сумму на разность: 10 × 2 = 20. Такой же ответ мы получили раньше.

Вместо того чтобы рассуждать об этом на словах, проще записать правило разности квадратов в виде алгебраического уравнения. Обозначим буквой a первое число и буквой b второе, тогда наше правило будет иметь следующий вид:

a² – b² = (a + b)(a – b)

Мы уже наблюдали, как это работает для a = 6 и b = 4, однако данное уравнение подходит для любых a и b. Если вы думаете, что разность квадратов вам никогда не пригодится в жизни, представьте, что a = 20 и b = x, и посмотрите на уравнения из задачки о земельной афере. Там у нас (20 − x)(20 + x) = 400 − x², тот же самый результат!

Объяснение загадки с тремя числами

Помните подраздел «Фокус с тремя числами», размещенный в начале книги? Там я объяснял, что какими бы ни были три последовательно идущих числа, если умножить большее из них на меньшее, результат всегда будет на единицу меньше второго числа, возведенного в квадрат. Например, возьмем 12, 13 и 14. Результат умножения 12 × 14 = 168, что на единицу меньше, чем 132 = 169.

Опять воспользуемся уравнением для разности квадратов, подставив вместо b единицу. Вот что получится:

a² − 12 = (a + 1)(a – 1)

Вспоминаем, что 12 = 1 × 1 = 1, поэтому выходит

a² − 1 = (a + 1)(a – 1)

Теперь предположим, что a – второе из трех последовательно идущих чисел. Тогда (a + 1) будет наибольшим числом, а (a − 1) – наименьшим. Уравнение говорит нам, что если взять квадрат второго числа и вычесть из него единицу, то результат будет равен наибольшему числу, умноженному на наименьшее.

В случае с числами 12, 13 и 14 a = 13, но, разумеется, вместо 13 можно выбрать любое другое значение. Вот почему этот фокус применим к любым трем последовательно идущим числам.

Иллюстрация к книге — Математика для взрослых. Лайфхаки для повседневных вычислений [i_155.jpg]
Алгебра отлично подходит для разоблачения фокусов из серии «загадать любое число».

Как разрушить Вселенную

Помните, выше я предупреждал вас о такой вероятности? Если вы дочитали до этого места, значит, усердно трудились и многое узнали, поэтому будет совершенно справедливо вознаградить вас за старания неограниченными космическими суперспособностями…

Начнем с двух чисел, a и b, которые волей случая оказались равны:

a = b

Будем обращаться с обеими частями этого уравнения совершенно одинаковым образом. Смотрите внимательно…

Умножаем обе части на a: a² = ab

Вычитаем из обеих частей b²: a² – b² = ab – b²

С левой стороны уравнения получается разность квадратов, поэтому, как мы знаем, a² − b² = (a + b)(a – b). С правой стороны выходит ab − b², где оба элемента делятся на b, стало быть, это выражение можно записать как b(a − b). Все эти действия допустимы и абсолютно корректны.

Таким образом, получаем (a + b)(a – b) = b(a – b)

Теперь разделим обе части на (a – b) и получим (a + b) = b

Перед скобками множителя нет, а значит, их можно просто убрать

a + b = b

Переносим +b в другую часть уравнения, меняя знак:

a = b – b

И вот итог: a = 0

Теперь вспоминаем, что a и b могут быть любыми числами, следовательно, мы только что доказали, что любое число равно нулю. То есть получается, что любые измерения времени, пространства или веса несущественны: прощай, Вселенная!

Наша ошибка состояла в том, что мы разделили обе части уравнения на (ab). Но в случае, когда a = b, (a − b) = 0. Единственное, чего нельзя делать одновременно с обеими частями уравнения, – это делить на ноль! Если, конечно, вы не собираетесь потратить денек-другой на попытки разрушить Вселенную…

Системы уравнений

Если два неизвестных числа входят в два различных уравнения, их, как правило, можно найти.

Вот классическая задачка. Пара ботинок и щетка для обуви стоят 51 фунт, причем ботинки на 50 фунтов дороже щетки. Какова цена щетки?

Попробуйте спросить об этом Малькольма. Скорее всего, он ответит, что щетка стоит 1 фунт, а ботинки 50 фунтов, но тогда получается, что ботинки лишь на 49 фунтов дороже щетки… Выходит, Малькольм ошибается?!

Поразмыслив, вы можете угадать ответ, но я хочу рассказать, как получить его с помощью алгебры. Обозначим цену ботинок буквой s, а цену щетки c. К счастью, у нас достаточно сведений, чтобы составить два уравнения:

Уравнение 1. Ботинки и щетка стоят 51 фунт: s + c = 51

Уравнение 2. Ботинки стоят на 50 фунтов дороже щетки: s = 50 + c

Реклама
Вход
Поиск по сайту
Ищем:
Календарь