
Онлайн книга «Искусство статистики. Как находить ответы в данных»
множественная проверка гипотез: выполнение сразу нескольких проверок, что увеличивает вероятность получения хотя бы одного ложноположительного результата (ошибка первого рода); мода (вероятностного распределения): для дискретного распределения – самое вероятное значение, для непрерывного – точка максимума плотности; мода (выборки): значение, которое встречается в выборке чаще всего; мощность критерия: вероятность правильного отклонения нулевой гипотезы при условии справедливости альтернативной гипотезы. Равна 1 – β, где β – вероятность ошибки второго рода для статистического критерия; мудрость толпы: идея, согласно которой характеристика, определяемая групповым мнением, ближе к истине, чем предположения большинства отдельных людей; наука о данных: изучение и применение методов получения информации из данных, включая построение алгоритмов для прогнозов. Традиционная статистика – часть науки о данных, в которую также входят кодирование и управление данными; независимая (предикторная) переменная: переменная, которая фиксируется посредством проекта или наблюдения, чья связь с зависимой переменной может представлять интерес; независимые события: события A и B независимы, если наступление A не влияет на вероятность наступления B, то есть (B|A) = p(B), или, что эквивалентно, p(BA) = p(B)p(A) [280]; непрерывная случайная величина: случайная величина X, которая может (по крайней мере, в принципе) принимать любое значение в пределах определенного промежутка. Непрерывная величина имеет плотность вероятности
[281] – такая функция ƒ, что
нормальное распределение: случайная величина имеет нормальное (гауссовское) распределение со средним μ и дисперсией σ2, если ее плотность имеет вид ![]() Математическое ожидание E(X) = μ, дисперсия D(X) = σ2, среднеквадратичное отклонение SD(X) = σ. Стандартизованная случайная величина
нулевая гипотеза: принимаемое по умолчанию теоретическое предположение, как правило, означающее отсутствие эффекта или результата, проверяемое с помощью P-значения. Обычно обозначается H0; обратная причинная зависимость: когда связь между двумя переменными изначально кажется причинно-следственной, а на деле причинно-следственные отношения оказываются обратными. Например, у людей, которые не употребляют алкоголь, показатели здоровья хуже, чем у умеренно пьющих, однако как минимум частично это объясняется тем, что некоторые ныне непьющие бросили пить из-за ухудшения здоровья; обучение без учителя: определение классов на основании случаев без подтвержденного состава с использованием какой-либо формы процедуры кластеризации; обучение с учителем: построение алгоритма классификации на основании случаев с подтвержденным составом классов; объективное априорное распределение: попытка устранить субъективный компонент в байесовском анализе, заранее определив априорные распределения, которые должны отражать наше незнание параметров, а данные должны говорить за себя. Нет никакой общей процедуры для определения таких априорных распределений; односторонние и двусторонние P-значения: значения, соответствующие односторонним и двусторонним критериям; односторонние и двусторонние критерии: односторонний критерий для проверки гипотезы используется тогда, когда нулевая гипотеза, например, указывает, что эффект медицинского вмешательства отрицателен. Эта гипотеза отвергается только в случае, если наблюдаются большие положительные значения тестовой статистики, выражающие оценку эффекта вмешательства. Двусторонний критерий уместен, когда нулевая гипотеза говорит, что эффект медицинского вмешательства равен в точности нулю. Тогда к отказу от такой гипотезы ведут и большие положительные, и большие отрицательные значения тестовой статистики; ожидаемые частоты: количество событий, которые должны произойти в будущем в соответствии с принятой вероятностной моделью; остаток: разность между наблюдаемым значением и значением, предсказываемым статистической моделью; относительный риск: если в группе людей, подвергавшихся какому-то воздействию, абсолютный риск равен p, а в группе людей, не подвергавшихся этому воздействию, абсолютный риск равен q, то относительный риск определяется как p / q; |