Книга Физика без формул, страница 15 – Александр Леонович

Авторы: А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ч Ш Ы Э Ю Я
Книги: А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
Бесплатная онлайн библиотека LoveRead.me

Онлайн книга «Физика без формул»

📃 Cтраница 15

До поры до времени так и считали. Однако оказалось, что природа и здесь подготовила нам сюрприз.

В 1911 году голландский ученый Хейке Камерлинг-Оннес обнаружил удивительное явление. При очень низких температурах, близких к абсолютному нулю, некоторые металлы резко, скачком, теряют свое сопротивление. Это явление получило название сверхпроводимости.

К сожалению, такой «подарок», который обеспечил бы передачу электрической энергии по проводам без потерь, принять людям было трудно. Ведь чтобы создать такие низкие, несуществующие на Земле, температуры, приходилось, как в холодильнике, энергию затрачивать. Поэтому начались многолетние поиски новых, высокотемпературных сверхпроводников.

Шли десятилетия. Лишь в пятидесятых годах это явление получило теоретическое объяснение. Однако температуру необычного состояния удалось поднять только на пару десятков градусов. Чего только не изобретали исследователи! И вот в 1986 году швейцарским ученым удалось найти такие композиции веществ, в которых сверхпроводимость возникала уже при сотне градусов выше абсолютного нуля.

Иллюстрация к книге — Физика без формул [i_059.jpg]

Это, конечно, еще далековато до наших обычных температур. Тем не менее, достижение сверхпроводимости упростилось. Сейчас ее используют во все более широких масштабах при проведении физических экспериментов.

А еще благодаря этому открытию укрепилась надежда, что в скором времени она будет достигнута и при обычных, комнатных температурах.

Иллюстрация к книге — Физика без формул [i_060.jpg]

Подумайте, к каким революционным последствиям может привести появление материалов с нулевым электрическим сопротивлением.

Как зарядиться давлением?

Какие зажигалки вы знаете? Может быть, кому-нибудь встречались старые — с фитильком, пропитанным бензином. Или новые, газовые, когда колесиком высекают искру, поджигающую струйку вырывающегося сжатого газа. На кухнях, где стоят газовые плиты, пользуются подсоединенными к сети электрическими зажигалками, в которых проскакивает искра, созданная высоким напряжением. А не попадались ли вам зажигалки без всяких проводов, но так же высекающие искры при нажатии на кнопку?

Действительно, откуда в них берется энергия? Если вы разберете такую зажигалку в поисках батарейки или газового баллончика, то ничего подобного не обнаружите. А найдете внутри небольшой кристалл с подсоединенными к нему проводочками. Это — кристалл кварца, который как выяснилось более 100 лет назад, обладает интересными свойствами. При сжатии его с двух сторон на других гранях возникают электрические заряды двух разных знаков, то есть создается электрическое напряжение. Именно его используют в зажигалках для создания искры.

Иллюстрация к книге — Физика без формул [i_061.jpg]

Такое любопытное явление, названное пьезоэлектричеством, стали применять уже во время I мировой войны для обнаружения… подводных лодок. Двигаясь в воде, винт лодки создает попеременные сжатия и разрежения воды, бегущие от лодки в виде волн. Если на их пути разместить пьезоэлектрический кристалл, то он начнет колебаться под действием переменного давления и его грани станут заряжаться. Возникнет электрический сигнал, который позволит таким образом уловить шум от далекой подводной лодки.

Пьезоэлектрический эффект сегодня широко применяют в микрофонах и телефонах, для создания ультразвуковых волн, обнаружения дефектов внутри металлов и для измерения механических напряжений и вибраций.

Поле — стремительный гонец

Давайте задумаемся над вот каким вопросом. Пусть нам понадобится включить какой-то мощный электрический прибор, доступ к которому затруднен. Ну что ж, для этого мы протянем к нему провода, а кнопку или рубильник разместим в удобном нам месте. Теперь одним движением пальца щелкаем кнопкой, замыкаем цепь, и что-то там вдалеке зажглось, завращалось, загрохотало, поехало…

Как вы считаете, когда мы замкнули цепь, заряды от нас сразу помчались к прибору? Моментально добежали до него и вернулись обратно? Закружились по цепи? Да, закружились, но не так скоро, как нам могло показаться.

Оказывается, при включении цепи заряды, переносящие ток, пришли в движение все одновременно. Собственная скорость, с которой они текут, удивительно мала — какие-то доли миллиметра в секунду. Почему же тогда прибор почти мгновенно отреагировал на наше нажатие кнопки и сразу заработал?

А дело в том, что не сами заряды побежали по цепи так быстро, они только передали друг другу сигнал — «пора двигаться!» Вот этот-то сигнал и несется с огромной — триста тысяч километров в секунду — скоростью. Что же это за скорость такая? Ее называют скоростью распространения электрического поля и равна она скорости света.

Идея о том, что вокруг электрических зарядов меняются свойства пространства, иными словами, создается электрическое поле, возникло в работах великого английского ученого Майкла Фарадея. В дальнейшем она блестяще подтвердилась и легла в фундамент теории электромагнетизма.

Вот и в нашем примере зарядам не было нужды мчаться «во весь дух» по цепи. Им было достаточно «шевельнуться» при ее замыкании, а информацию об этом электрическое поле донесло до всех «закоулков» цепи, заставив везде течь ток.

Иллюстрация к книге — Физика без формул [i_062.jpg]
Мир магнетизма
…Сесть на железный круг
И, взяв большой магнит,
Его забросить вверх высоко,
Докуда будет видеть око;
Он за собой железо приманит…
Э. Ростан

Знаете, что описано в этом стихе? Так знаменитый герой Эдмона Ростана, поэт и фантазер Сирано де Бержерак предлагал полететь… на Луну. Подумайте, кстати, возможно ли подниматься подобным манером.

Нам же сейчас важен лишь один из участников этого «полета» — магнит. Знали о нем, как видно, исстари. И компасы придумали, и для всяких развлечений и устройств приспосабливали. Да и вы, конечно, баловались с магнитами, заставляя ими «плясать» гвоздики и стальные скрепки.

Но вот когда человек научился управлять «магнитной силой» и даже создавать магниты искусственные, он сумел воплотить в жизнь свои давние и заветные мечты.

Иллюстрация к книге — Физика без формул [i_063.jpg]

Можно ли говорить друг с другом на огромном расстоянии? Бывает ли связь без проводов? Как посмотреть футбол в Америке, сидя на диване в Москве?

Реклама
Вход
Поиск по сайту
Ищем:
Календарь