Онлайн книга
Примечания книги
1
Keeble F. Plant Animals: A Study in Symbiosis. Cambridge: Cambridge University Press, 1919.
2
Rumpho M.E, Worful J.M, Lee J., et al. Horizontal gene transfer of the algal gene psb0 to the photosynthetic sea slug Elysia chlorotica. Proceedings of the National Academy of Sciences 2008; 105 (46); 17 867-17871.
3
Ryan F. Virus X. London: HarperCollins, UK, 1996.
4
Wimmer E. The test-tube synthesis of a chemical called poliovirus. European Molecular Biology Reports 2006; 7: 53–59.
5
Judson H. F. The Eighth Day of Creation: Makers of the Revolution in Biology. London: Penguin Books, 1979.
6
Spencer H. Principles of Biology. London, Williams and Norgate, 1864.
7
A better way to treat cancer, Sikora K. Daily Telegraph 18 Sept 2006. http://www.telegraph.co.uk/health/3343151/А-better-way-totreat-cancer.html
8
Vogelstein В., Kinzler K. W. Cancer genes and the pathways they control. Nature Medicine 2004; 10 (8): 789–799.
9
Sjöblom Т, Jones S., Wood L. D., et al. The consensus coding sequences of human breast and colorectal cancers. Science 2006; 314: 268–274.
10
http://cancergenome.nih.gov.
11
Название этой главы — перефразированная цитата из нобелевской речи Дж. Ледерберга: «Земная жизнь — плотная цепь генетических взаимодействий».
12
Huxley L. Life and Letters of Thomas Henry Huxley. Vol I London: Macmillan & Co, 1900: 219.
13
Lederberg J. Cell genetics and hereditary symbiosis. Physiological Review, 1952; 32: 403–430.
14
Sapp J. Evolution by Association: A History of Symbiosis. Oxford: Oxford, University Press, 1994.
15
De Вагу Н. A. Die Erscheinung der Symbiose (1879).
16
Константин Сергеевич Мережковский (1855–1921) — ботаник, зоолог, философ, писатель. Брат писателя и общественного деятеля Д. С. Мережковского. — Прим. ред.
17
Margulis L., Fester R. Symbiosis as a Source of Evolutionary Innovation. Oxford Oxford University Press, Oxford, 1999. См. также: Smith J. M., Szathmáry E. The Origins of Life. Oxford: Oxford University Press, 1999.
18
Ryan F. Darwin’s Blind Spot. New York: Houghton Mifflin, 2002.
19
Shilts R. And the Band Played On. London: Penguin Books, 1987.
20
Essex М., Kanki P. J. The origins of the AIDS vims. Scientific American, October 1988: 256: 64–71.
21
Polesz B. J., Ruscetti F. W., et al. Detection and isolation of type-C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proceedings of the National Academy of Sciences, 1980; 77: 7415–9. See also, Gallo R. The discovery of the first human retrovirus: HTLV-1 and HTLV-2. Retrovirology 2005; 2:17–24.
22
В книге «Virus X» я описал увлекательную историю открытия вируса ВИЧ-1 в январе 1983 года Люком Монтанье из Пастеровского института в Париже.
23
Kanki P. J., McLane М. F., et al. Serologic identification and characterization of a macaque T-lymphotropic retrovirus closely related to HTLV–III. Science 1985; 228: 1199–1201.
24
Whitfield J. В. Parasitoids, polydnaviruses and endosymbiosis. Parasitology 1990; 6: 381–384. Whitfield J. B. Estimating the age of the polydnavirus / braconid wasp symbiosis. Proceedings of the National Academy of Sciences 2002; 99: 7508–13.
25
De Groot N., Otting N., et al. Evidence for an ancient selective sweep in the МНС class I gene repertoire of chimpanzees. Proceedings of the National Academy of Sciences 2002; 99:11 748-53. Gagneux P., Wills C., Gerloff U., et al. Mitochondrial sequences show diverse evolutionary histories of African hominoids. Proceedings of the National Academy of Sciences 1999; 96: 5077–82. Zhao Z., Jin L., Fu Y.-X., et al. Worldwide DNA sequence variation in a 10-kilobase noncoding region on human chromosome 22. Proceedings of the National Academy of Sciences 2000; 97: 11 354-8. Vogel T. U., Evans D. T., Urvater J. E., et al. Major histocompatibility complex Class 1 genes in primates: co-evolution with pathogens. Immunological Reviews 1999; 167: 327–337.
26
Экспрессия гена — процесс, в ходе которого наследственная информация от гена преобразуется в РНК или белок. — Прим. ред.
27
Из моего интервью с профессором Луисом Вильярреалом, 2002.
28
Gilbert S. F.. Developmental Biology, seventh edition. Sunderland, Massachusetts: Sinauer Associates Inc, 2003:130.
29
Hanger J. J., Bromham L. D., McKee J. J., et al. The nucleotide sequence of koala (Phascolarctos cinereus) retrovirus: a novel type c endogenous virus related to gibbon ape leukemia virus. J. Virol. 2000; 74 (9): 4264–72.
30
Martin J., Hemiou E., Cook J., et al. Interclass transmission and phyletic host tracking in murine leukemia virus-related retroviruses. J. Virol. 1999;73 (3): 2442–9.
31
Tarlinton R., Meers J., Young P. R. Retroviral invasion of the koala genome. Nature 2006; 442: 79–81; Tarlinton R., Meers J., Young P. Biology and evolution of the endogenous koala retrovirus. Cellular and Molecular Life Sciences, 2008. Online at doi 10.1007/s00 018–008–8499-y.
32
Katzourakis A., Tristem М., Pybus O. G., Gifford R. J. Discovery and analysis of the first endogenous retrovirus. Proceedings of the National Academy of Sciences 2007; 104 (15): 6261–5.
33
Gifford R. J., Katzourakis A., Tristem M., et al. A transitional endogenous lentivirus from the genome of a basal primate and implications for lentivirus evolution. Proceedings of the National Academy of Sciences 2008; 105 (51): 20 362-7.
34
Здесь: способность длительно сохранять свои свойства в окружающей среде. — Прим. ред.
35
Ryan F. Darwin’s Blind Spot. New York: Houghton Mifflin, 2002.
36
Villarreal L. P. Viruses and the Evolution of Life. Washington, DC: ASM Press 2005.
37
Thomas L. The Lives of a Cell. London: Penguin Books, 1974: 4.
38
Перевод А. Эфроса. — Прим. ред.
39
http://en.wikipedia.org/wiki/Barbara_McClintock.
40
Расе II J.K., Feschotte C. The evolutionary history of human DNA transposons: evidence for intense activity in the primate lineage. Genome Research 2007; 17: 422–432.
41
Villarreal L. The source of self: genetic parasites and the origin of adaptive immunity. Annals of the New York Academy of Sciences (in press).
42
Weiss R. A. The discovery of endogenous retroviruses. Retrovirology 2006; 3:67 Online at doi: 10.1186/1742–4690-3–67.
43
Harris J. R. Placental endogenous retrovirus (ERV): structural, functional and evolutionary significance. Bioessays 1998; 20: 307–316.
44
Martin M. A., Bryan T., Rasheed S., Khan A. S. Identification and cloning of endogenous retroviral sequences present in human DNA. Proceedings of the National Academy of Sciences 1981; 78 (8): 4892–6. Cohen M., Rein A., Stephens R. M., et al. Baboon endogenous virus genome: molecular cloning and structural characterisation of nondefective viral genomes from DNA of a baboon cell strain. Proceedings of the National Academy of Sciences 1981; 78 (8): 5207–11.
45
O’Connell C., O’Brien S., Nash W. G., Cohen M. ERV3, a full-length human endogenous provirus: chromosomal localization and evolutionary relationships. Virology 1984; 138: 225–235.
46
Ono M. Molecular cloning and long terminal repeat sequences of human endogenous retrovirus genes related to types A and В retrovirus genes. Journal of Virology 1986; 58 (3): 937–944.
47
Britten R. J. DNA sequence insertion and evolutionary variation in gene regulation. Proceedings of the National Academy of Sciences 1996; 93: 9374–7.
48
O’Neill R.J.W., Eldredge М. D. В., Graves J. А. М. Chromosome heterozygosity and de novo chromosome rearrangements in mammalian interspecies hybrids. Mammalian Genome 2001; 12: 256–259.
49
Sverdlov E. D. Retroviruses and human evolution. Bio Essays 2000; 22: 161–171.
50
Hughes J. F.,Coffin J. M. Human endogenous retrovirus К solo-LTR formation and insertional polymorphisms: implications for human and viral evolution. Proceedings of the National Academy of Sciences 2004; 101: 1668–72.
51
Mi S., Lee X., Li X., et al. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 2000; 403: 785–9.
52
Blond J.-L., Lavillette D., Cheynet V., et al. An envelope glycoprotein of the human endogenous retrovirus HERV-W is expressed in the human placenta and fuses cells expressing the type D mammalian retrovirus receptor. Journal of Virology 2000; 74: 3321–9.
53
Blaise S., de Parseval N., Bénit L., Heidmann T. Genomewide screening for fusogenic human endogenous retrovirus envelopes identifies syncytin 2, a gene conserved on primate evolution. Proceedings of the National Academy of Sciences 2003; 100:13 013-8.
54
Bonnaud B., Bouton О., Oriol G., et al. Evidence of selection on the domesticated ERVWE1 env retroviral element involved in placentation. Molecular Biology and Evolution 2004; 21:1895–901.
55
Andersson A.-C., Merza M., Venables P., et al. Elevated levels of the endogenous retrovirus ERV3 in human sebaceous glands. Journal of Investigative Dermatology 1996; 106: 125–128.
56
Andersson A.-C., Venables P., Tonjes R. R., et al. Developmental expression of HERV-R (ERV-3) and HERV-K in human tissue. Virology 2002; 297: 220–225.
57
De Parseval N., Lazar V., Casella J.-F., et al. Survey of human genes of retroviral origin: identification and transcriptome of the genes with coding capacity for complete envelope proteins. Journal of Virology 2003: 77 (19): 10 414-22.
58
Nekrutenko A., Li W.-H. Transposable elements are found in a large number of human protein-coding genes. Trends in Genetics 2001; 17(11): 619–621.
59
Van Lagemaat L.N., Landre J.-R., Mager D.L., Medstrand P. Transposable elements in mammals promote regulated variations in diversifications of genes with specialized functions. Trends in Genetics 2003; 19 (10): 530–6.
60
Seifarth W.,Frank O., Zeilfelder U., et al. Comprehensive analysis of human endogenous retrovirus transcriptional activity inhuman tissues with a retrovirus-specific microarray. Journal of Virology 2005; 79: 341–52.
61
Flockerzi A., Ruggieri A., Frank О., et al. Expression patterns of transcribed human endogenous retrovirus HERV-K (HML-2) loci in human tissues and the need for a HERV transcriptome project. BMC Genomics 2008; 9: 354. Online at doi:10.1186/ 1471–2164-9–354.
62
Thomas L. The Lives of a Cell. London and New York: Penguin Books 1978.
63
Bosch Е., Jobling M.A. Duplications of the AZFa region of the humanY chromosome are mediated by homologous recombination between HERVs and are compatible with male fertility. Human Molecular Genetics 2003; 12 (3): 341–347.
64
Zody M.C., Garber M., Adams D. J., et al. DNA sequence of human chromosome 17 and analysis of rearrangement in the human lineage. Nature 2006; 440: 1045–9.
65
Kazazian H.H., Wong С., Youssoufian H., et al. Haemophilia A resulting from de novo insertion of LI sequences represents a novel mechanism for mutation in man. Nature 1988; 332: 164–166. Narita N., Nishio H., Kitoh Y., et al. Insertion of a 5’ truncated L1 element into the 3’ end of exon 44 in the dystrophin gene resulted in skip of the exon during splicing in a case of Duchenne muscular dystrophy. Journal of Clinical Investigation 1993; 91 (5): 1862–7. Holmes S. E., Dombroski B.A., Krebs C., et al. A new retrotransposable human L1 element from the LRE2 locus on chromosome 1q produces a chimaeric insertion. Nature Genetics 1994; 7: 143–148.
66
Batzer MA, Deininger PL. Alu repeats and human genomic diversity. Nature Reviews Genetics 2002; 3: 370–380. Sukarova E, Dimovski AJ, Tchacarova P., etal. An alu insert as the cause of a severe form of hemophilia A. Acta haematologica 2001; 106 (3): 126–129.
67
Перевод Б. Пастернака. — Прим. ред.
68
Ужас самоотравления (англ.).
69
Krieg A.M., Steinberg A. D. Retroviruses and autoimmunity. Journal of Autoimmunity 1990; 3: 137–166.
70
Villarreal L. The source of self: genetic parasites and the origin of adaptive immunity. Annals of the New York Academy of Sciences (in press).
71
Dawkins R., Leelayuwat C., Gaudieri S., et al. Genomics of the major histocompatibility complex: haplotypes, duplication, retroviruses and disease. Immunological Reviews 1999; 167: 275–304.
72
Perron H., Jouvin-Marche E., Ounanian-Paraz A., et al. Multiple sclerosis retrovirus particles and recombinant envelope trigger an abnormal immune response in vitro, by inducing polyclonal V 16-T-lymphocyte activation. Virology 2001; 287: 321–332.
73
Dolei A., Serra С., Mameli G., et al. Multiple sclerosis-associated retrovirus (MSRV) in Sardinian MS patients. Neurology 2002; 58: 471–473.
74
Anthony J. М., van Marie G., Opii W., et al. Human endogenous retrovirus glycoprotein-mediated induction of redox reactants causes oligodendrocyte death and demyelination. Nature Neuroscience 2004; 7 (10): 1088–95.
75
Секвенирование — определение последовательности нуклеотидов в гене. — Прим. ред.
76
Yasumoto K., Horiuchi T., Kagami S., et al. Mutation of DNASE1 in people with systemic lupus erythematosus. Nature Genetics 2001; 28: 313–314.
77
Sekigawa l., Ogasawara H., Naito T., et al. Systemic lupus erythematosus and human endogenous retroviruses. Modern Rheumatology 2003; 13:107–113.
78
Stetson D.B., Ko J.S., Heidmann T., et al. Trex 1 prevents cellintrinsic initiation of autoimmunity. Cell 2008; 134: 587–598.
79
Weiss R. А. Retroviruses and cancer. Current Science 2001; 81 (5): 528–534.
80
http://en.wikipedia.org/wiki/Harald_zur_Hausen.
81
Dunlap К. А., Palmarini M., Varela М., et al. Endogenous retroviruses regulate periimplantation placental growth and differentiation. Proceedings of the National Academy of Sciences 2006; 103 (39): 14 390-5.
82
Cousens C., Bishop J.V., Philbey A.W., et al. Analysis of Integration sites of Jaagsietke sheep retrovirus in ovine pulmonary adenocarcinoma. Journal of Virology 2004; 78 (16): 8506–12.
83
Более подробное описание этих исследований и обсуждение результатов можно найти в работе Ryan F. P. An alternative approach to medical genetics based on modern evolutionary biology. Part 4: HERVs in cancer. Journal of the Royal Society of Medicine 2009: (in press).
84
Guasch G., Popovici C., Mugneret F., et al. Endogenous retroviral sequence is fused to FGFR1 kinase in the 8p 12 stemcell myeloproliferative disorder with t (8; 19) (pl2; q13.3). Blood 2003; 101 (1): 286–288.
85
Schulte A. M., Shoupeng L., Kurtz A., et al. Human trophoblast and choriocarcinoma expression of the growth factor pleiotrophin attributable to germ line insertion of an endogenous retrovirus. Proceedings of the National Academy of Sciences 1996; 93: 14 759-64.
86
Более подробное описание этих исследований и дальнейшие ссылки можно найти в работе: Ryan F. P. An alternative approach to medical genetics based on modem evolutionary biology. Part 4: HERVs in cancer. Journal of the Royal Society of Medicine 2009: (in press).
87
Ruprecht K., Mayer J., Sauter М., et al. Endogenous retroviruses and cancer. Cellular and Molecular Life Sciences, 2008; 65: 3366–82.
88
Montagna M., Santacatterina M., Torri A., et al. Identification of a 3kb Alu-mediated BRCA1 gene rearrangement in two breast/ovarian cancer families. Oncogene 1999; 18 (28): 4160–5.
89
O’Neil J., Tchinda J., Gutierrez A., et al. Alu elements mediate MYB gene tandem duplication in human T-ALL. Journal of Experimental Medicine 2007; 204 (13): 3059–66.
90
Fukuuchi A., Nagamura Y., Yaguchi H., et al. A wholeMEN1 gene deletion flanked by Alu repeats in a family with multiple endocrine neoplasia type 1. Japanese Journal of Clinical Oncology 2006; 36 (11): 739–744.
91
Более подробное описание этих исследований и дальнейшие ссылки можно найти в работе: Ryan F.P. An alternative approach to medical genetics based on modem evolutionary biology. Part 4: HERVs in cancer. Journal of the Royal Society of Medicine 2009: (in press).
92
Serafïno A., Balestrieri E., Pierimarchi P., et al. The activation of human endogenous retrovirus К (HERV-K) is implicated in melanoma cell malignant transformation. Experimental Cell Research 2009; 315: 849–862.
93
Smith С.Н. The Alfred Russel Wallace Page.
94
Gardiner B., Milner R., Morris M. (eds). Wallace defends Darwin’s Priority — 50 years on. In Survival of the Fittest: Celebrating the 150th anniversary of the Darwin-Wallace Theory of Evolution. The Linnean Society Special Issue № 9 2008: 47.
95
Roossinck M. J. Symbiosis versus competition in plant evolution. Nature Reviews Microbiology 2005; 3: 917–924.
96
Márquez L.M., Redman R. S., Rodriguez R. J., Roossinck M.J. A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. Science 2007; 315: 513–515.
97
Villarreal L.P. Viral persistence and symbiosis: are they related? Symbiosis 2007; 43:1–9. Ryan F.P. Viruses as symbionts. Symbiosis 2007; 44: 11–21.
98
Ryan F. Р. Genomic creativity and natural selection: a modern synthesis. Biological Journal of the Linnean Society 2006; 88: 655–672
99
Feder M.E. Evolvability of physiological and biochemical traits: evolutionary mechanisms including and beyond singlenucleotide mutation. Journal of Experimental Biology 2007; 210:1653–60.
100
Ryan F. Genomic creativity and natural selection: a modern synthesis. Biological Journal of the Linnean Society 2006; 88: 655–672.
101
Muller H. J. Why polyploidy is rarer in animals than in plants. American Naturalist 1925; 59; 346–353.
102
Rieseberg L.H. Homoploid reticulate evolution in Helianthus: evidence from ribosomal genes. American Journal of Botany 1991; 78:1218–37.
103
Rieseberg L. H., Raymond O., Rosenthal D.M., et al. Major ecological transitions in annual sunflowers facilitated by hybridisation. Science 2003; 301: 1211–1216.
104
Ananthaswamy A. Hybrids survival in the desert. New Scientist 2003,16 August: 12–13.
105
Soltis D.E., Soltis P. S. Polyploidy: recurrent formation and genome evolution. TREE 1999; 14: 348–352.
106
Arnold M. L. Natural Hybridisation and Evolution. Oxford: Oxford University Press 1997: 7. См. также, Martinson G. D., Whitham T.G., Rurek R. J., Keim P. Hybrid populations selectively filter gene introgression between species. Evolution 2001; 55: 1325–1335.
107
Аллели — различные формы одного и того же гена, определяющие альтернативные варианты развития одного и того же признака. — Прим. ред.
108
Mavárez J., Salazar С. А, Bermingham E., Salcedo С., Jiggins C.D. Speciation by hybridization in Helioconius butterflies. Nature 2006;441: 868–71.
109
Gompert Z., Fordyce J.A., Forister M.L., et al. Homoploid hybrid speciation in an extreme habitat. Science 2006; 314: 1923–5.
110
Mable В.К., Bogart J. Р. Hybridization between tetraploid and diploid species of tree frogs (genus Hyla). Journal of Heredity 1995; 86: 432–440.
111
Mable В.К., Bogart J. Р. Call analysis of triploid hybrids resulting from diploid-tetraploid species crosses of hylid tree frogs. Bioacoustics 1991; 3:111–119.
112
Cornai L. The advantages and disadvantages of being polyploid. Nature Reviews Genetics 2005; 6: 836–846.
113
Gallardo M.H., Bickham J.W., Honeycutt R. L., et al. Discovery of tetraploidy in a mammal. Nature 1999; 401: 341.
114
Gallardo M.H., Kirsch J.W. A. Molecular relationships among Octodontidae (Mam malia: Rodentia: Cav iomorpha). Journal of Mammalian Evolution 2001; 8: 73–89.
115
Gallardo M.H., Kausel G., Jiménez A., et al. Whole-genome duplications in South American desert rodents (Octodontidae). Biological Journal of the Linnean Society 2004; 82: 443–451.
116
Название этой главы взято из статьи Spring J. Hypothesis. Vertebrate evolution by interspecific hybridisation — are we polyploid? Federation of European Biochemical Sciences Letters 1997; 400: 2–8
117
Ohno S. Evolution by Gene Duplication. New York: Springer Verlag, 1970.
118
Patterson N., Richter D. J., Gnerre S., et al. Genetic evidence for complex speciation of humans and chimpanzees. Nature 2006;441:1103–8.
119
Our human history. New York Times 22 May 2006, Editorial.
120
Detwiller K. M., Burrell A.S., Jolly C.J. Conservation implications of hybridization in African primates. American Society of Primatologists Conference 2003, abstract #127.
121
Whitfield J. Lovers, not fighters? New genetic signs that modern humans mated with Homo erectus. Scientific American March 2008; 21.
122
Saey T. Н. First rough draft of Neanderthal genome released. Science News Web Edition 12 February 2009.
123
Ferrier D.E.K., Minguillón C. Evolution of the Hox / ParaHox gene clusters. International Journal of Developmental Biology 2003; 47: 605–611.
124
Gibson T. J., Spring J. Evolution of sequences, structures and genomes. Biochemical Society Transactions 2000; 28 (2): 259–264.
125
Brooke N. M., Garcia-Fernandez J., Holland P. W. H. The ParaHox gene cluster is an evolutionary sister of the Hox gene cluster. Nature 1998; 392: 920–922. See also, Pebusque M.J., Coulier F., Birnhaum D., Pontarotti P. Ancient large-scale genome duplications: phylogenetic and linkage analyses shed light on chordate genome evolution. Molecular Biology and Evolution 1998; 15: 1145–59.
126
McLysaght A., Hokamp K., Wolfe К. H. Extensive genomic duplication during early chordate evolution. Nature Genetics 2002; 2: 128–129.
127
Более подробное описание этих исследований и дальнейшие ссылки можно найти в работе: Ryan F.P. An alternative approach to medical genetics based on modern evolutionary biology. Part 5: epigenetics and genomic duplications. Journal of the Royal Society of Medicine 2009: (in press).
128
Check E. Mix and match: the hunt for what makes us human. Nature «News» 2006; 443: 8.
129
Holmes В. Magic Numbers. New Scientist 8 April 2006: 38–41.
130
Bernaud R., Boyer A., Nègre., et al. Prenatal detection of the 17p11.2 duplication in Charcot-Marie-Tooth disease type 1A: necessity of a multidisciplinary approach for heterogeneous disorders. European Journal of Human Genetics 2002; 10: 297–302.
131
Lucito R., Healy J., Alexander J., et al. Large scale copy number polymorphisms in the human genome. Science 305: 525–528.
132
Redon R., Ishikawa S., Fitch K. R. Global variation in copy number in the human genome. Nature 2006; 444: 444–456.
133
Baird P. А.Reducing birth defects in populations. Centre for Health Services and Policy Research, The University of British Columbia, January 1999. HPRU 99: 4D. http://www.chspr.ubc.ca/files/pubhcations/1999/hpru99-04D.pdf.
134
Yamamoto А., Lucas J.J., Hen R. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington’s disease. Cell 2000: 101: 57–66.
135
PubMed — англоязычная текстовая база данных медицинских и биологических публикаций, созданная Национальным центром биотехнологической информации (NCBI) США на основе раздела «биотехнология» Национальной медицинской библиотеки США. — Прим. ред.
136
Weissmann G. Fashions in science: from philosophers’ camp to epigenetics. The Federation of American Societies for Experimental Biology (FASB) Journal 2008; 22: 4033–7.
137
Телеология — философское учение о целесообразности бытия, оперирующее наличием разумной воли Творца или внутренней силы, потенциально заключающей в себе цель и окончательный результат. — Прим. ред.
138
Stern C.D. Conrad H. Waddington’s contributions to avian and mammalian development, 1930–1940. International Journal of Developmental Biology, 2000; 44: 15–23.
139
Уоддингтон ввел термин «эпигенетический» в своей книге «An introduction to Modem Genetics». London: Allen & Unwin, 1939: 154–156.
140
Spadafora C. A reverse transcriptase-dependent mechanism plays central roles in fundamental biological processes. Systems Biology in Reproductive Medicine 2008; 54: 11–21.
141
Nanney D.L. Epigenetic control systems. Proceedings of the National Academy of Sciences 1958; 44; 712–717.
142
Lyon M. F. Gene action in the X-chromosome of the Mouse (Mus musculus L). Nature 1961; 190: 372–373.
143
Holliday R., Pugh J. Е. DNA modification mechanisms and gene activity during development. Science 1975; 187: 226–232.
144
Riggs A. D. X inactivation, differentiation and DNA methylation. Cytogenetics and Cell Genetics 1975; 14: 9–25.
145
Sagar R., Kitchin R. Selective silencing of eukaryotic gene expression. Science 1975; 189: 426–433.
146
Holliday R. The inheritance of epigenetic defects. Science 1987; 238:163–170.
147
Jablonka E., Lamb M. J. The inheritance of acquired epigenetic variations. Journal of Theoretical Biology 1989; 139: 69–83.
148
Maynard Smith J. Models of a dual inheritance system. Journal of Theoretical Biology 1990; 143: 41–53.
149
Jablonka E., Lachmann M., Lamb M.J. Evidence, mechanisms and models for the inheritance of acquire characteristics. Journal of Theoretical Biology 1992; 158: 245–68.
150
Smith J.M, Szathmáry E. The Origins of Life. Oxford: Oxford University Press, 1999.
151
Jablonka E., Lamb M.J. Epigenetic Inheritance and Evolution: The Lamarckian Dimension. Oxford University Press, Oxford, 1995.
152
Jablonka E., Lamb M. J. Evolution in Four Dimensions. Cambridge, Massachusetts, and London: the MIT Press, 2005.
153
Jablonka E., Raz G. Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. In press, The Quarterly Review of Biology 2009; 84 (2): 31–176.
154
Gilberts. F., Epel D. Ecological Developmental Biology. Sunderland, Massachusetts: Sinauer Associates Inc, 2009: 8.
155
Grant-Downton R.T., Dickinson H. G. Epigenetics and its implications for plant biology. 1. The epigenetic network in plants. Annals of Botany 2005; 96: 1143–64. Grant-Downton R. T., Dickinson H. G. Epigenetics and its implications for plant biology. 2. The «epigenetic epiphany»: epigenetics, evolution and beyond. Annals of Botany 2006; 97: 11–27.
156
Wilson A. G. Epigenetic regulation of gene expression in the inflammatory response and relevance to common diseases. Journal of Periodontology 2008; 79: 1514–9.
157
Godwin J., Luckenbach J.A., Borski R.J. Ecology meets endocrinology: environmental sex determination in fishes. Evolutionary Development 2003; 5 (1): 40–49.
158
Gluckman P.D., Hanson М. А., et al. Effect of the in utero and early life conditions on adult health and disease. New England Journal of Medicine 2008; 359: 61–73.
159
Pugh J.E., Holliday R. Do chemical carcinogens act by altering epigenetic controls through DNA repair rather than by mutations? Heredity 1978; 40: 329.
160
Holliday R. A new theory of carcinogenesis. British Journal of Cancer 1979; 40: 513–522.
161
Holliday R. DNA methylation and epigenotypes. Biochemistry (Moscow) 2005; 70 (5): 500–504. (русскоязычное издание Биохимия 2005; 70 (5): 612–617.
162
Fraga M., Esteller M. Epigenetics and aging: the targets and the marks. Trends in Genetics 2007; 23 (8): 413–418.
163
Fraga M. F., Ballestar E., Paz M.F., et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proceedings of the National Academy of Sciences 2005; 102 (30): 10 604-9.
164
Harper S. Q.S., Taber P.D., Не Х., et al. RNA interference improves motor and neuropathological abnormalities in a Huntington’s disease mouse model. Proceedings of the National Academy of Sciences 2005; 102 (16): 5820–5.
165
Bandea C.I. A new theory on the origin and nature of viruses. Journal of Theoretical Biology 1983; 105: 591–602. Bandea С. I. The origin and evolution of viruses as molecular organisms (new paper under submission).
166
Claverie J.-M. Viruses take center stage in cellular evolution Genome Biology 2006: 7 (6). doi:10.1186/gb-2006–7–6–110.
167
Forterre P. The two ages of the RNA world, and the transition to the DNA world: a story of viruses and cells. Biochemie 2005; 87: 793–803. Forterre P. Three RNA cells for ribosomal lineages and three DNA viruses to replicate their genomes: a hypothesis for the origin of cellular domain. Proceedings of the National Academy of Sciences 2006; 103 (10): 3669–74. Forterre P., Prangishvili D. The great billion-year war between ribosome — and capsid — encoding organisms (cells and viruses) as the major source of evolutionary novelties. Proceedings of the National Academy of Sciences (in press).
168
Lawton G. Uprooting Darwin’s tree. New Scientist 24 January 2009: 34–39.