Книга Дело сердца. 11 ключевых операций в истории кардиохирургии, страница 48. Автор книги Томас Моррис

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Дело сердца. 11 ключевых операций в истории кардиохирургии»

Cтраница 48

Это указывало на то, что загадка механизма работы сердца, возможно, раскрыта, однако размещение электродов непосредственно на сердце было не самым практичным способом изучения электрической активности у живых пациентов. Тридцать лет спустя британский физиолог Август Уоллер придумал способ делать это без малейшего хирургического вмешательства. Он прикреплял электроды к груди и спине пациента, а затем подсоединял их к капиллярному электрометру — прибору, в котором для измерения электрического потенциала использовался тонкий столбик ртути. Наблюдая за ртутью через микроскоп, Уоллер обнаружил, что столбик слегка двигается с каждым ударом сердца. Эти движения можно было изобразить на графике, отражающем изменения электрического потенциала во времени, — получался аналог современной электрокардиограммы. Первая ЭКГ в истории, снятая у пациента в больнице Святой Мэри в Лондоне, была опубликована в медицинском журнале в 1887 году.

Одним из присутствовавших при этом историческом событии был молодой голландский врач Уильям Эйнтховен. Он сразу понял значимость свершившегося, но при этом догадывался, что данные, которые выдавал этот громоздкий аппарат, были слишком неточными, чтобы их можно было использовать на практике. В течение нескольких лет Эйнтховен разработал значительно более усовершенствованное устройство и назвал его струнным гальванометром. Электрический сигнал от расположенных на груди электродов пропускался через покрытую слоем серебра кварцевую нить, подвешенную в магнитном поле. Даже незначительный ток вызывал ее колебание, величина которого измерялась фотографическим способом. Такой метод давал гораздо более точные результаты, чем ртутный столбик, использовавшийся Уоллером, что позволяло Эйнтховену наблюдать характеристики образуемой сердцебиением осциллограммы, которые ему прежде никогда видеть не доводилось. Его исследования были опубликованы в 1906 году, однако мало кто проявил интерес к его работе, пока четыре года спустя он не сообщил, что, протянув между больницей и своей лабораторией кабель, он мог изучать сердцебиение пациента, находящегося в миле от него. За это изобретение Эйнтховен был удостоен Нобелевской премии — благодаря его работе врачам впервые удалось описать электрическую активность сердца, и теперь они с огромной точностью могли диагностировать различные нарушения сердечного ритма.

Пока Эйнтховен готовил результаты своих первых опытов к публикации, загадка о том, что заставляет сердце биться, была наконец-то разгадана. Десятью годами ранее швейцарский кардиолог Вильгельм Хиз обнаружил прежде никем не замеченный пучок мышечных волокон, исходящих из перегородки, которая разделяет сердце на две части. Он понял, что эта ткань была предназначена для передачи электрических импульсов от правого предсердия к двум желудочкам с целью вызвать их сокращение — это было первое вещественное доказательство наличия внутри сердца проводящего контура. К 1906 году обнаружили уже целый ряд подобных волокон, однако источник электрических сигналов так и не определили. Найден он был только летом 1906 года студентом-медиком в совершенно неожиданном месте — на ферме в графстве Кент. Мартин Флэк, сын местного мясника, помогал анатому Артуру Кейту проводить исследования в импровизированной лаборатории в его гостиной. Пока Кейт вместе с женой катался на велосипеде, Флэк разрезал сердце крота и обнаружил там «удивительную структуру» в верхней части правого предсердия.

Крошечный пучок нервных волокон, который Флэк увидел в свой микроскоп, не представлял собой ничего особенного, однако он оказался тем самым последним кусочком пазла, над которым величайшие ученые умы ломали голову не одно столетие. Эта «удивительная структура» представляла собой синусовый узел, природный мотор сердца — именно в нем и рождались заставлявшие его биться электрические сигналы. Раз в секунду или чаще синусовый узел посылает электрический импульс, который распространяется по сердечной мышце, вызывая сокращение желудочка. Долю секунды спустя электрический сигнал достигает похожего пучка, расположенного в стенке между двумя половинами сердца — предсердно-желудочковый узел, — который, в свою очередь, посылает импульс, заставляющий желудочки сокращаться, выбрасывая находящуюся в них кровь.

Синусовый узел — это дирижер, благодаря которому все мышечные волокна сокращаются в такт ударам сердца. Подобно настоящему маэстро он может менять темп в зависимости от обстоятельств: реагируя на сигналы мозга и содержащиеся в крови гормоны, водитель сердечного ритма увеличивает его, если мы занимаемся спортом, например, и снижает, когда потребность тела в кислороде снова снижается [19]. Сеть электрических соединений, отвечающая за сердцебиение, очень сложная — настолько сложная, что до сих пор до конца не изучена. Из-за болезни или возраста может случиться размыкание проводящих путей или могут появиться новые, аномальные соединения, из-за чего электрический сигнал нарушается и возникает аритмия — сбой сердечного ритма. Возникающие при этом напряжения — крошечные, и измеряются они в милливольтах, однако эта микроскопическая электрическая система очень точно регулирует ритм сердца. Открытие механизма управления работой сердца стало важнейшим прорывом, который помог врачам понять природу всевозможных сбоев, случающихся в ней. Однако пройдет еще немало лет, прежде чем медики на основе этих знаний разработают эффективный способ лечения.

Австралиец Марк Лидвил, один из врачей-первопроходцев, больше, впрочем, известный в качестве рыболова, чуть ли не единственного в мире поймавшего огромную редкую рыбу. Восьмого февраля 1913 года он выловил черного марлина — крупную морскую рыбу, способную развивать в воде скорость до 130 км/ч и чрезвычайно ценимую рыбаками-любителями. Пойманный им в тот день в водах Порт-Стивена 32-килограммовый экземпляр был подарен Австралийскому музею — и по сей день там можно увидеть скелет этой чудо-рыбы. Улов этот сумел затмить наркозный аппарат, изобретенный им же в тот же год и использующийся в большинстве австралийских больниц. Впрочем, и созданный Лидвилом пятнадцать лет спустя первый в мире искусственный водитель сердечного ритма (электрокардиостимулятор) тоже не сумел выйти из тени его рыболовного триумфа.

Интерес Лидвила вызывали процессы, происходящие с сердцем, когда оно отказывало. Он одним из первых использовал ЭКГ, чтобы узнать, как в сердце меняются электрические сигналы, когда пациент умирает. Он обнаружил, что смерти зачастую предшествует выход из строя проводящей системы. Он знал, что электрический ток провоцирует сокращение сердечной мышцы, и сделал вывод, что нездоровому сердцу, вероятно, можно помочь каким-то искусственным путем. Вместе со своим коллегой из Сиднейского университета он разработал прибор для искусственной стимуляции сердца на случай, если его синусовый узел перестанет вырабатывать электрические сигналы. У его аппарата, который подключался к штепсельной розетке, было два электрода: один прикреплялся к подушечке на коже, а другой представлял собой иглу, которая вводилась прямо в сердце. Затем по контуру подавались регулярные электрические импульсы, чтобы стимулировать сердечную мышцу. Первым пациентом стал младенец, рожденный в 1926 году в женской больнице Краун-Стрит, — у него не было пульса. После того как все стандартные для того времени реанимационные мероприятия оказались безуспешными, Лидвил вонзил иглу электрокардиостимулятора в желудочек сердца ребенка и включил его. Сердце немедленно отреагировало, и десять минут спустя, когда аппарат выключили, оно продолжало нормально биться. Ребенок полностью поправился, и когда Лидвил в 1929 году выступал на медицинской конференции с докладом о своей работе, то выразил уверенность, что его прибор может спасти много жизней: «Может быть множество неудач, однако одна спасенная жизнь из пятидесяти или даже ста — это уже значительный шаг вперед, при том что раньше надежды не было вообще никакой».

Вход
Поиск по сайту
Ищем:
Календарь
Навигация