Книга Пять литров красного. Что необходимо знать о крови, ее болезнях и лечении, страница 63. Автор книги Михаил Фоминых

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Пять литров красного. Что необходимо знать о крови, ее болезнях и лечении»

Cтраница 63

В каком-то смысле тут слово «таргетная» скорее уместно применить к процессу поиска таких лекарств. Мы знаем «мишень» и ищем низкомолекулярное лекарство, нацеленное против нее. Подобное направленное конструирование новых лекарств получило название «драг-дизайн». Виртуальный скрининг огромных библиотек соединений позволяет подобрать различные варианты структур, обладающих потенциальной активностью по отношению к белку-мишени, а современные автоматизированные методы комбинаторной химии дают исследователям возможность синтезировать огромное количество соединений и осуществлять процесс отбора (скрининга) наиболее активных.

Но оказывается, можно поручить процесс поиска лекарств природе, накопившей большой опыт в этом деле. Правда, работает она несколько шаблонно, предпочитая конструировать большие молекулы. И в следующей главе речь пойдет как раз о них.

Глава 28
Арсенал природы и моноклональные антитела

Когда в организм попадает какая-то подозрительная молекула (патогенный фактор), срабатывают системы защиты, основанные на врожденном и приобретенном (адаптивном) иммунитете. Когда-то, на заре иммунологии, шел яростный спор между разными научными школами о том, какой же из этих видов иммунитета играет главную роль. Благодаря очевидным практическим результатам вроде создания противодифтерийной сыворотки иммунология долгое время развивалась в русле исследований приобретенного иммунного ответа, основанного на выработке антител. И перед ней, естественно, вставал вопрос: как же образуются антитела?

За решение этой проблемы первым взялся Пауль Эрлих, про которого я уже не раз упоминал. В работе 1897 года «Измерение активности дифтерийной сыворотки и ее теоретические основы» [138] он выдвинул гипотезу образования антител, основанную на разрабатываемой им с 1885 года теории боковых цепей. Эрлих полагал, что к поверхности ядер клеток в виде боковых цепей присоединены молекулы, отвечающие за специфические функции клетки. Определенные участки антигенов – позже их стали называть факторами специфичности или детерминантными группами – благодаря химическому сродству (аффинности) связываются с этими боковыми цепями (впоследствии Эрлих переименовал их в рецепторы), вызывая усиленную выработку их клетками. Продуцируемые в изобилии рецепторы попадают из клеток в плазму, где циркулируют в виде антител, связываясь с антигенами. Таким образом, Эрлих рассматривал взаимодействие антитело‒антиген как обычную химическую реакцию.

Теория Эрлиха была опровергнута в 1923 году Карлом Ландштейнером (да-да, тем самым), который обнаружил, что некоторые низкомолекулярные вещества, названные им гаптенами, не способны стимулировать образование антител сами по себе, но в то же время иммунный ответ можно вызвать с помощью гаптена, присоединенного к большой молекуле (обычно белковой), называемой носителем. Иммунизация комплексом гаптен‒носитель вызывает появление антител как против носителя, так и против гаптена, то есть гаптены способны связываться с такими антителами в силу аффинности, но сами по себе не вызывают образования антител.

Проблему попытались разрешить, оставаясь в рамках чисто химических представлений. Были выдвинуты так называемые матричные (инструктивные) теории, суть которых при различных вариациях сводилась к тому, что синтез антител происходит на поверхности антигенов, служащей своеобразной матрицей (по аналогии с матрицами для отливки типографского шрифта). Казус с гаптенами объяснялся тем, что для синтеза на матрице требовалась достаточно протяженная поверхность. Но эти теории не могли объяснить, почему же организм не вырабатывает антитела к собственным антигенам (толерантность) и почему при повторном контакте организма с антигеном происходит более быстрая и сильная генерация антител (иммунологическая память).

Ответ на эти вопросы дала разработанная в 1957 году усилиями датского иммунолога Нильса Ерне (1911‒1994) и австралийского вирусолога Фрэнка Бёрнета (1899‒1985) клонально-селективная теория, в каком-то смысле возродившая теорию боковых цепей Эрлиха. После ряда уточнений вкратце эта теория выглядит так. На поверхности B-лимфоцита имеются рецепторы, распознающие антиген, так что неактивированные (наивные) B-лимфоциты при встрече с антигеном и срабатывании ряда других факторов начинают размножаться (пролиферировать) и превращаться в плазматические клетки (плазмоциты), которые вырабатывают антитела, причем каждая антителообразующая клетка может синтезировать только один вид антител. Некоторые потомки исходных В-лимфоцитов трансформируются в долгоживущие В-клетки памяти, поэтому иммунная система способна хранить память о контакте с антигеном, что объясняет иммунологическую память. Толерантность же объясняется тем, что незрелые B-лимфоциты проходят обучение в костном мозге, снижающее аффинность рецепторов к собственным антигенам организма.

До 1970-х годов в иммунологии теория и практика мало соприкасались между собой. Практики создавали лечебные и диагностические сыворотки, а после того, как в 1944 году исследователь из Гарварда Эдвин Кон (1892‒1953) нашел способ выделения гамма-глобулина (по сути, химически чистых антител) из плазмы крови, начали активно использовать гамма-глобулины (иммуноглобулины) для лечения и профилактики кори, гепатита и полиомиелита. Нобелевский лауреат Судзуми Тонегава (род. 1939) саркастически описывал тогдашнюю ситуацию: «Тогда вся иммунология была – заразить животное да получить вакцину». Однако в 1970-х годах результаты теоретических исследований привели к грандиозному прорыву – появлению технологии моноклональных антител.

Моноклональные антитела – это довольно модная тема, которая в СМИ излагается обычно так: «Грубо говоря, это белковый комплекс, который связывается только с другим конкретным белковым комплексом. Представьте себе клетку в виде двери, у которой есть замок со скважиной. И моноклональное антитело – это ключ, который можно повернуть в этой скважине и, скажем, вызвать апоптоз – запрограммированную природой смерть именно этой клетки, именно с таким белком. А теперь представьте себе, что эта клетка – раковая».

Ну, во-первых, мы уже знаем, что в роли детерминантных групп антигенов, с которыми связывается антитело, могут выступать и небелковые комплексы. Во-вторых, метафора «ключ‒замок» применима для всех лекарств, нацеленных на молекулярную мишень, и уж точно для всех антител, в том числе содержащихся в сыворотках и иммуноглобулинах. Ну а в-третьих, апоптоз в общем-то не самый главный механизм уничтожения клеток-мишеней, несущих антиген: антитело, стыкуясь с антигеном, чаще всего просто маркирует его, чтобы мишень атаковали эффекторные клетки [139] организма (это называется опсонизация). Так что «ключ» поворачивать необязательно, можно прицепить к нему «маячок» для клеток-киллеров или же «бомбу» (например, радиоактивный изотоп иттрий-90 или йод-131) – подобные «связки» называют иммуноконъюгатами. В случае раковых клеток (очень непростая цель) антителу зачастую проще «встряхнуть» T-лимфоциты, которые сами с ними расправятся. Ну и в довершение ко всему этому можно добавить, что в повседневной жизни человеку чаще всего приходится сталкиваться с моноклональными телами, используемыми в диагностических целях, в частности для определения групп крови.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация