Все эти воздушные объемные образования и есть орбитали. На обложках учебников (рис. 4.3) изображены молекулы воды и метана, мы же далее сосредоточим свое внимание на более простых объектах – атомных орбиталях. Иными словами, мы посмотрим, где располагаются электроны в изолированных атомах, не связанных химическими связями. Показанные выше картинки пока отложим в сторону и заодно отметим, что истинная картина в молекулах воды и метана внешне заметно отличается от того, что изображено на обложках. О том, почему такое произошло, поговорим позже.
Напомним, что электрон движется в атоме вокруг ядра не по фиксированной линии – орбите, а занимает некоторую область пространства. Ранее использовали термин "орбита", но постепенно пришли к мысли, что орбита (лат. orbita – «колея») – это линия в пространстве, по которой, например, движется наша планета вокруг Солнца. Область обитания электрона – не линия, а некая объемная часть пространства, и потому стали применять несколько измененный термин «орбиталь». Своеобразие состоит в том, что эта часть пространства не имеет четких границ – она размыта. Электрон, например, в атоме водорода (рис. 4.4а) может с определенной вероятностью оказаться либо весьма близко к ядру, либо на значительном удалении, однако существует область, где его появление наиболее вероятно. Точки, обозначающие случайное местонахождение электрона, в некоторой области располагаются гуще. Орбиталь стали наглядно изображать в виде поверхности, очерчивающей ту область, где вероятность появления электрона наибольшая, иначе говоря, электронная плотность максимальна (рис. 4.4б). Ее следует воспринимать не как тонкую пленку, а как некое объемное тело, внутри которого находится электрон с вероятностью 95–98 %.
У атома водорода орбиталь электрона имеет шаровую форму – следовательно, электронная плотность в направлении каждой оси трехмерных координат одинакова. Ее называют s-орбиталью (рис. 4.5).
К настоящему моменту описано пять типов орбиталей: s, p, d, f и g. Названия первых двух сложились исторически. Затем был выбран алфавитный принцип, а буква е пропущена, поскольку ее используют для обозначения самого электрона. Таким образом, никакого скрытого смысла эти буквы не несут. Орбитали существуют независимо от того, находятся ли на них электроны (занятые орбитали) или отсутствуют (вакантные орбитали). Это «резервные квартиры», которые постепенно заполняются электронами по мере увеличения порядкового номера элемента – то есть заряда ядра с непременным сохранением электронейтральности атома.
При заполнении электронных оболочек в атомах действует ряд правил, сформулированных квантовой физикой. Сами эти правила в окончательной формулировке достаточно просты – ниже мы рассмотрим их подробнее.
В таблице Менделеева, помимо порядкового номера элемента, существует и еще одно очень "удобное" число – номер периода, то есть горизонтального ряда. Фактически он представляет собой этаж для размещения электронов, при этом количество доступных этажей для конкретного элемента точно соответствует номеру периода в таблице. У водорода и гелия – только один уровень (этаж), на котором могут находиться электроны, и на нем находится одна однокомнатная квартира – то есть s-орбиталь.
Есть общее правило для всех орбиталей: в каждой из них может помещаться не более двух электронов, что несколько напоминает принцип распределения жилой площади у людей – для двух человек вполне достаточно однокомнатной квартиры. Возникает естественный вопрос: почему только два электрона могут находиться на одной орбитали, ведь пространство орбитали весьма просторное, а электроны предельно малы? Ответ на этот вопрос был получен в результате работы высокопрофессиональных физиков, а потому совершим небольшую экскурсию в прошлое.
В 1922 г. два немецких физика О. Штерн и В. Герлах провели эксперимент, который стал исторически значимым. Они пропустили пучок атомов серебра через магнитное поле и на выходе получили два разделившихся луча. Это было неожиданно, ведь атомы серебра одинаковы, и у каждого имеется по одному электрону на внешней (валентной) орбитали. Заряды электронов одинаковы, но реагируют по-разному на магнитное поле. Позже такое же обнаружили у щелочных металлов (Li, Na), имеющих один электрон на валентной орбитали.
Объяснение дали два американских физика Дж. Ю. Уленбек и С. А. Гаудсмит. Они предположили, что у электрона есть собственный магнитный момент, но для того, чтобы он появился, заряженная частица должна вращаться наподобие волчка. Так появился термин "спин электрона" (от англ. spin – «вращение»). Важно, что это вращение не беспорядочное, а вокруг воображаемой оси, именно так, как в случае с волчком. Дело в том, что волчок можно раскрутить либо справа налево, либо слева направо, а третьего варианта не существует – авторы использовали смелую аналогию. Образ волчка как иллюстрация «спина электрона» оказался наглядным и исключительно удачным, хотя и не имеет никакого отношения к реальности. Никто никогда не видел вращение электрона и, скорее всего, никогда не увидит. Удобный термин «спин электрона» вошел в учебники, и некоторые ученики поначалу думают, что электрон вращается, как волчок. Но важно то, что, как и волчок, который имеет только два направления вращения, спин имеет два состояния, которые стали обозначать стрелками, направленными вверх ↑ или вниз ↓. Понятие спина оказалось исключительно полезным и позволило объяснить магнитные свойства веществ.
В 1925 г. швейцарский физик-теоретик В. Паули, обобщив существующие результаты по изучению строения атомов, сформулировал общие принципы состояния электронов в атоме. Эти принципы соблюдаются строго и не знают исключений, потому они получили название "запрет Паули". Из этого запрета следует, что на одной орбитали не могут находиться два электрона с одинаковым спиновым состоянием – только с противоположно направленными спинами ↑ и ↓. Следовательно, добавить на орбиталь третий электрон невозможно, так как его спин будет направлен либо вверх ↑, либо вниз ↓, то есть так же, как у одного из двух уже имеющихся. Точно так же невозможно запустить на столе три волчка, которые вращались бы в три разные стороны. В 1945 г. В. Паули получил Нобелевскую премию по физике "за открытие принципа запрета, названного его именем".
Итак, стало понятно, почему на одной орбитали может находиться только два электрона. Оставалось выяснить, как же происходит сам процесс заполнения орбиталей электронами. В 1927 г. немецкий физик Ф. Хунд сформулировал соответствующее правило. Согласно этому правилу, каждый новый электрон занимает пустующую орбиталь, и только в том случае, если пустых комнат – орбиталей – нет, они начинают подселяться к имеющимся «жильцам». Это очень похоже на поведение незнакомых между собой людей, заселяющих пустующую гостиницу или занимающих места в пустом автобусе. Правило действует только для простых веществ, состоящих из атомов одного типа, но как только атом входит в состав химического соединения, правило может нарушаться, начинается «подселение» одного электрона к другому (но не более двух на одной орбитали!!!), и при этом освобождается какая-то орбиталь, то есть происходит «уплотнение жильцов и частичное освобождение жилплощади». Это с удовольствием и весьма успешно изучает химия комплексных соединений.