Ruggeri, M., Major, J. C. Jr., McKeown, C., Knighton, R. W., Puliafito, C. A., & Jiao, S. (2010). Retinal structure of birds of prey revealed by ultra-high resolution spectral-domain optical coherence tomography. Investigative Ophthalmology and Visual Science, 51(11), 5789–5795.
Sagi, D. (2011). Perceptual learning in vision research. Vision Research, 51(13), 1552–1566.
Sanes, J. R., & Masland, R. H. (2015). The types of retinal ganglion cells: Current status and implications for neuronal classification. Annual Review of Neuroscience, 38, 221–246.
Scholl, B., & Priebe, N. J. (2015). Neuroscience: The cortical connection. Nature, 518(7539), 306–307.
Seabrook, T. A., Burbridge, T. J., Crair, M. C., & Huberman, A. D. (2017). Architecture, function, and assembly of the mouse visual system. Annual Review of Neuroscience, 40, 499–538.
Sejnowski, T. J. (2018). The deep learning revolution: Artificial intelligence meets human intelligence. Cambridge, MA: MIT Press.
Seung, S. (2012). Connectome: How the brain’s wiring makes us who we are. New York: Houghton Mifflin Harcourt.
Shadlen, M. N., & Movshon, J. A. (1999). Synchrony unbound: A critical evaluation of the temporal binding hypothesis. Neuron, 24(1), 67–77, 111–125.
Sharma, J., Angelucci, A., & Sur, M. (2000). Induction of visual orientation modules in auditory cortex. Nature, 404(6780), 841–847.
Sheikh, K. (2017, June 1). How we save face – Researchers crack the brain’s facial-recognition code. Scientific American. Retrieved from https://www.scientificamerican.com/article/how-we-save-face-researchers-crack-the-brains-facial-recognition-code.
Shekhar, K., Lapan, S. W., Whitney, I. E., Tran, N. M., Macosko, E. Z., Kowalczyk, M., et al. (2016). Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell, 166(5), 1308–1323 e1330.
Sherman, S. M., & Guillery, R. W. (2013). Functional connections of cortical areas. Cambridge, MA: MIT Press.
Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., et al. (2018). A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science, 362 (6419), 1140–1144.
Sincich, L. C., Horton, J. C., & Sharpee, T. O. (2009). Preserving information in neural transmission. Journal of Neuroscience, 29(19), 6207–6216.
Sinha, P. (2013). Once blind and now they see. Scientific American, 309(1), 48–55.
Smolyanskaya, A., Haefner, R. M., Lomber, S. G., & Born, R. T. (2015). A modality-specific feedforward component of choice-related activity in MT. Neuron, 87(1), 208–219.
Solomon, S. G., Tailby, C., Cheong, S. K., & Camp, A. J. (2010). Linear and nonlinear contributions to the visual sensitivity of neurons in primate lateral geniculate nucleus. Journal of Neurophysiology, 104(4), 1884–1898.
Srihasam, K., Vincent, J. L., & Livingstone, M. S. (2014). Novel domain formation reveals proto-architecture in inferotemporal cortex. Nature Neuroscience, 17(12), 1776–1783.
Stevens, C. F. (1998). Neuronal diversity: Too many cell types for comfort? Current Biology, 8(20), R708–710.
Stokkan, K. A., Folkow, L., Dukes, J., Neveu, M., Hogg, C., Siefken, S., et al. (2013). Shifting mirrors: Adaptive changes in retinal reflections to winter darkness in Arctic reindeer. Proceedings of the Royal Society B: Biological Sciences, 280(1773), 2013–2451.
Strogatz, S. (2018, December 26). One giant step for a chess-playing machine. New York Times. Retrieved from https://www.nytimes.com/2018/12/26/science/chess-artificial-intelligence.html.
Strom, R. C. (1999). Genetic and environmental control of retinal ganglion cell variation. Chapter 4 in Genetic analysis of variation in neuron number, PhD diss., University of Tennessee Health Science Center, Memphis, Tennessee. Retrieved from www.nervenet.org/papers/strom99/Chapter4.html.
Sumbul, U., Song, S., McCulloch, K., Becker, M., Lin, B., Sanes, J. R., et al. (2014). A genetic and computational approach to structurally classify neuronal types. Nature Communications, 5, 3512.
Suresh, V., Ciftcioglu, U. M., Wang, X., Lala, B. M., Ding, K. R., Smith, W. A., et al. (2016). Synaptic contributions to receptive field structure and response properties in the rodent lateral geniculate nucleus of the thalamus. Journal of Neuroscience, 36(43), 10 949–10 963.
Tanaka, K. (1983). Cross-correlation analysis of geniculostriate neuronal relationships in cats. Journal of Neurophysiology, 49(6), 1303–1318.
Tanaka, K. (1985). Organization of geniculate inputs to visual cortical cells in the cat. Vision Research, 25(3), 357–364.
Tang, S., Lee, T. S., Li, M., Zhang, Y., Xu, Y., Liu, F., et al. (2018). Complex pattern selectivity in macaque primary visual cortex revealed by large-scale two-photon imaging. Current Biology, 28(1), 38–48 e33.
Thompson, A., Gribizis, A., Chen, C., & Crair, M. C. (2017). Activity-dependent development of visual receptive fields. Current Opinion in Neurobiology, 42, 136–143.
Tien, N. W., Pearson, J. T., Heller, C. R., Demas, J., & Kerschensteiner, D. (2015). Genetically identified suppressed-by-contrast retinal ganglion cells reliably signal self-generated visual stimuli. Journal of Neuroscience, 35(30), 10 815–10 820.
Tonegawa, S., Liu, X., Ramirez, S., & Redondo, R. (2015). Memory engram cells have come of age. Neuron, 87(5), 918–931.
Tootell, R. B., Reppas, J. B., Dale, A. M., Look, R. B., Sereno, M. I., Malach, R., et al. (1995). Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging. Nature, 375(6527), 139–141.
Tsao, D. (2014). The macaque face patch system: A window into object representation. Cold Spring Harbor Symposia on Quantitative Biology, 79, 109–114.
Tsao, D. Y., & Livingstone, M. S. (2008). Mechanisms of face perception. Annual Review of Neuroscience, 31, 411–437.
Tsodyks, M., & Gilbert, C. (2004). Neural networks and perceptual learning. Nature, 431(7010), 775–781.
Turner, M. H., Sanchez Giraldo, L. G., Schwartz, O., & Rieke, F. (2019). Stimulus– and goal-oriented frameworks for understanding natural vision. Nature Neuroscience, 22(1), 15–24.
Wagner, I. C. (2016). The integration of distributed memory traces. Journal of Neuroscience, 36(42), 10723–10725.