Изрядная доля генома похожа на генетический лом — это гены и прочие элементы, утратившие свою функциональность в ходе эволюции. Например, у нас много генов обонятельных рецепторов, которые поломаны и никак не действуют: на более ранних стадиях эволюции наши предки нуждались в тонком восприятии запахов, чтобы выжить, но мы уже давно отлично справляемся, располагая довольно слабым обонянием. Поэтому, когда в данных генах произошли мутации, это не вызвало проблем и поломанный вариант просто передался будущим поколениям. Вы унаследовали сотни поломанных генов от родителей и в свою очередь передадите их дальше, а может быть, уже передали — и они все так же останутся неработающими.
Есть также много повторяющихся последовательностей, как будто не имеющих особого смысла. Иногда вирусы вставляют свою копию в ДНК хозяина, и по всему геному оказывается разбросано довольно много участков, напоминающих древние вирусные последовательности. Есть участки ДНК, скопированные в ходе так называемых событий дупликации. Если что-то имеется в двух экземплярах, не страшно, если один из них сломается, поэтому в результате у вас нередко оказываются две версии гена — рабочая и нерабочая (псевдоген). А еще в ДНК есть кусочки, которые, по-видимому, возникли как простой побочный эффект стремления ДНК к самокопированию: длинные-длинные последовательности, которые выглядят абсолютно бессмысленными (АТАТАТАТАТАТАТАТАТ …).
В общем и целом это нам как будто особо не мешает. Не похоже, чтобы человеческий геном подвергался отбору на эффективность, а если такой отбор и существует, над ним, очевидно, одерживают верх склонность ДНК к самокопированию и различные механизмы, привносящие в последовательность ДНК новые отрезки. Многие другие организмы отлично себя чувствуют с геномами еще большими, чем у нас, и, соответственно, при еще большей доле паразитической ДНК. Амеба Polychaos dubium, как утверждают, обладает геномом, по размеру более чем в 200 раз превышающим наш. У обычного лука геном в пять раз больше нашего, однако все же это мы едим лук (или извлекаем из него ДНК), а не наоборот. В то же время геном рыбы фугу из семейства иглобрюхих меньше нашего в восемь раз — а рыба все-таки устроена несколько сложнее лука.
Некоторые данные, по всей видимости, указывают на то, что слишком большой геном обходится дорого, по крайней мере в трудные времена. Есть такое растение — теосинте, которое считается предком кукурузы. В 2017 г. вышла статья, в которой сравнивались геномы различных видов теосинте, растущих на разных высотах. У многих растений геномы огромные, но, как оказалось, у теосинте чем выше в горы, тем меньше геном. Если вы живете в суровых условиях высокогорья, то не можете позволить себе зря тратить энергию на копирование ДНК, не выполняющей никакой полезной работы.
Можно, конечно, допустить, что у человеческого генома как раз нужный размер и каждый элемент в нем выполняет важную роль. Однако подобное чудо маловероятно. Скорее всего, наш геном действительно несет значительное количество «мусорной» ДНК.
Это не значит, что в человеческом геноме нет ничего интересного и удивительного. Когда я только начал заниматься генетикой, мы уверенно утверждали, что геном человека содержит около 100 000 генов — ведь мы такие значительные, особенные существа, а следовательно, генов у нас должно быть много, не так ли? Затем эти цифры поползли вниз, они становились все меньше… меньше… и меньше. К моменту завершения проекта «Геном человека» число генов сократилось до 20 000 с небольшим. Отчасти это объясняется тем, что наши гены устроены достаточно сложно и многие из них выполняют не одну задачу. Иногда это подразумевает, что одна и та же задача выполняется немного по-разному: например, мышечный белок формируется по-разному в зависимости от того, нужен ли он для сердечной мышцы или для обычной. Иногда, однако, тот же самый белок может выполнять совершенно разные функции. Такие белки называют полифункциональными
[17]. Например, один из ферментов — белков, отвечающих за протекание химических реакций, — играет также важную роль, обеспечивая прозрачность роговице глаза.
Но примерно то же самое можно сказать о геномах многих других организмов и абсолютно то же — о геноме шимпанзе. Шимпанзе, в особенности бонобо (он же карликовый шимпанзе), настолько близки к нам генетически, что марсианину, вероятно, мы с ними покажемся всего лишь разными подвидами одного и того же животного. К шимпанзе мы ближе, чем африканские слоны к азиатским, так что трудно было бы винить нашего внеземного гостя за ошибку.
Откуда мы все это знаем? Благодаря проекту «Геном человека».
Когда был задуман проект «Геном человека», он казался невероятно амбициозной идеей. Секвенирована была лишь малая часть генома. В основном мы располагали чем-то вроде контурной схемы, а точнее, карты. Вам часто приходится слышать выражение «картирование генома», именно с этого генетики и начинали. Но в наши дни геномы отдельных людей не картируются, поскольку это уже проделано (вам ведь не нужно собственноручно составлять карту целого района, чтобы найти чей-то дом). Генетическая карта не похожа на карту города, у нее не два измерения, а только одно — местоположение вдоль нити ДНК, образующей хромосому. Чтобы составить подобную карту, нужна серия маркеров — генетических дорожных указателей, порядок которых относительно друг друга известен. Эти указатели состоят из участков ДНК, которые можно каким-либо образом безошибочно распознать. Допустим, у нас есть три таких маркера — A, B и C. Если мы составим генетическую карту с учетом A, B и C, она будет содержать информацию как минимум о том, в каком порядке они располагаются вдоль хромосомы — A-B-C, а не A-C-B, например, и не как-либо иначе. Еще лучше, если указано, что A, B и C расположены на первой хромосоме, а не на любой другой. А самая полезная карта — та, на которой отмечено, насколько далеко они отстоят друг от друга.
Первые такие карты были составлены в начале XX в. для дрозофил. К 1922 г. на четырех мушиных хромосомах были определены гены, отвечающие за развитие 50 различных признаков. Во всех случаях речь шла о физических различиях мушек, которые исследователь мог наблюдать непосредственно. Мушки описывались по множеству разных признаков и скрещивались с мушками, столь же тщательно описанными, а затем исследовалось получившееся потомство. Это была кропотливая, трудная работа, но она дала нам обширные фундаментальные сведения о генетике, снабдила нас инструментами, применявшимися на протяжении всего XX в. и сыгравшими ключевую роль в успехе проекта «Геном человека».
В частности, одна из первых карт X-хромосомы дрозофилы выглядела так:
На этой карте y означает желтую окраску тела (англ. yellow), w — белые глаза (англ. white), v — красные глаза (англ. vermillion — «киноварь»), а m — миниатюрные крылья. Карта подразумевает, что желтая окраска и белые глаза тесно взаимосвязаны — они с большей вероятностью наследуются вместе, — тогда как уменьшение крыльев скорее наследуется в сцепке с красными глазами, а не с белыми. Данная карта составлена еще одним почти забытым гением, Альфредом Стёртевантом, в 1913 г., когда ему был всего 21 год. В ту пору он работал под руководством великого генетика Томаса Ханта Моргана. Стёртевант, похоже, был вундеркиндом: к 21 году он уже имел длительный опыт изучения наследственности. На Моргана произвело большое впечатление то, что, еще будучи подростком, Стёртевант написал статью о наследовании лошадиных мастей, основываясь на наблюдениях, сделанных в детстве на ферме отца! Статья вышла в научном журнале, Морган предложил Стёртеванту работу у себя в лаборатории, а дальнейшее уже принадлежит истории.