Книга Живой мозг. Удивительные факты о нейропластичности и возможностях мозга, страница 69. Автор книги Дэвид Иглмен

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Живой мозг. Удивительные факты о нейропластичности и возможностях мозга»

Cтраница 69

Сэкономленное при повторном обучении время означает, что знания не пропали бесследно, а сохранялись где-то в мозге все те унылые годы, пока у вас не было практики24. Экономия времени обусловлена медлительностью перемен в более глубинных составляющих системы. Во время первого ухаживания сурдоязыку выучились ее динамично функционирующие части и с ростом практики передали изменения в более глубокие слои. Когда лайнер унес вашу даму сердца в далекие края, более проворные слои быстро подстроили свое поведение под новые обстоятельства. А более глубокие слои сомневались, стоит ли следовать их примеру: им не хотелось лишаться плодов долгого, медленного обучения, в которое они вложились. И когда в вашей биографии появилась вторая слабослышащая прелестница, глубинные слои почувствовали в себе готовность снова использовать сурдоязык, чем сберегли вам время на обучение. Вы-то думали, что навык забыт, а он, оказывается, глубоко впечатался в схему ваших нейронных связей.

Запрятанные в глубинах мозга накопленные навыки сохраняются до востребования в самых разнообразных обстоятельствах, даже в открытом космосе. Когда космонавты приземляются в спускаемом аппарате после длительного пребывания на орбите, они не то чтобы шустро выскакивают и вприпрыжку бегут в ближайший Starbucks — нет: первым делом космонавту нужно вспомнить навык ходьбы в условиях гравитации, почти так же, как если бы он сызнова учился ходить. Правда, повторное обучение происходит быстро и требует гораздо меньше времени, чем в детстве. Вообще первые попытки космонавта после приземления сделать хотя бы шаг показывают, как глубоко укоренен этот навык в мозге, и позволяют достаточно точно предсказать, насколько быстро восстановится способность к ходьбе25.

Наличие в мозге разнотемповых слоев проливает новый свет на изученную нами ранее схему. Помните Дестина Сэндлина и его хитрый велосипед с обратным рулем (глава 5)? Дестин месяцами осваивал навыки управления, а потом обнаружил, что на нормальном велосипеде ездить не может (правда, вскоре приспособился управлять обоими). Почему? Потому что для езды на каждом велосипеде в его мозге выстроилась своя нейронная схема. И теперь мы можем понять ее суть и смысл на более глубинном уровне: быстро полученное знание вовсе не записывается поверх предыдущего («Я научился ездить на велосипеде с рулем наоборот, и теперь программа езды на велосипеде с нормальным рулем стерлась»). Напротив, обе программы сохраняются в глубинных слоях мозга. После тренировок Дестин превратил обе программы в долговременные схемы, а контекст («На каком велосипеде я сейчас еду?») указывает, которую из них активировать.

Исключительно полезные программы в конечном счете оказываются впечатаны в память на уровне ДНК. Возьмем инстинкты — врожденные формы поведения, не требующие обучения26. Им мы обязаны пластичностью, которая действует на значительно более длительном временном промежутке, — дарвиновской пластичностью видов. Под действием естественного отбора те, кто обладал инстинктами, благоприятствующими выживанию и размножению, многие тысячи лет выживали и давали потомство.

* * *

Век назад одним из препятствий к раскрытию тайн памяти служил недостаток технологических инструментов. А сегодня подобной преградой стало, наоборот, наличие технологий — особенно компьютеров. Цифровая революция основательно изменила каждый аспект нашей жизни, что проявляется, в частности, при употреблении слова «память». Человеческий мозг сохраняет информацию, руководствуясь совершенно иными принципами, чем компьютер: он запоминает и потом может воспроизвести в памяти фильм, не кодируя его кадры пиксель за пикселем, а свои любимые истории мы тоже помним и можем повторить без кодирования слова за словом. Например, если вам рассказывают анекдот, нет нужды кодировать отдельный нейронный лог-файл[59] для каждого слова и падежа, в котором оно употреблено. Напротив, вы уясняете суть анекдота. Если вы владеете двумя языками, то сможете услышанный на одном языке анекдот пересказать на другом. В любой шутке главное не точные слова, в которые она облечена, а внутренние представления, вызываемые в сознании.

Мы кодируем не пиксели и значки, а новые стимулы, причем сообразуем их с уже имеющимися знаниями, включая известные нам физические и социальные понятия. Новое знание воспринимается через призму уже усвоенного. Так, двое могут смотреть на список важных дат в истории Монголии, но если в мозге одного из них имеется детализированная модель этой страны, то новые данные легко и просто встроятся в его сеть знаний. У другого же, если он мало что знает о Монголии и никогда не бывал там, новым фактам не за что будет зацепиться, и он их, скорее всего, не усвоит.

Вспомним, что в модели разнотемповых слоев медленные слои образуют основу для быстрых. В итоге самый ранний опыт служит фундаментом и развивается в структуру, на которую надстраивается весь последующий опыт. Все новое пропускается через фильтр узнанного ранее.

К добру или к худу, но по этой причине некоторые наши мечты о будущем неосуществимы. Помните, в фильме «Матрица» Нео и Тринити находят на крыше здания вертолет В-212. Нео спрашивает: «Ты умеешь водить такой вертолет?» Тринити отвечает: «Пока нет», а сама звонит коллеге и просит «программу пилотажа для вертолета В-212». Коллега лихорадочно стучит по клавиатурам компьютеров и за какие-то секунды загружает в мозг Тринити нужную программу. Они с Нео забираются в вертолет, Тринити садится за штурвал и мастерски лавирует между зданиями.

Каждому пришлось бы по душе такое будущее, да только нам его не видать. Почему? А потому, что память есть функция всего, что ранее уложилось в ней. У кого-то знания о том, как пилотировать вертолет В-212, могут быть закодированы по принципу схожести с управлением мотоциклом. Другой человек, возможно, с детства умеет ездить верхом, и потому его знания о пилотировании могут опираться на моторную память управления поводьями. У третьего те же знания хранятся в контексте видеоигр, которыми он увлекается с детства. Каждый по-своему усваивает навык пилотирования вертолета, поэтому невозможно составить стандартный набор инструкций для загрузки в любой мозг. Иными словами, «мозговые» инструкции по пилотированию вертолета, в отличие от компьютерных, не есть подгружаемый файл; напротив, эти знания прочно привязаны ко всему жизненному опыту, пережитому лично вами. Ранний опыт выстраивает в мозге внутренний город памяти, в котором каждый вновь прибывающий житель должен отыскать свой и только свой уникальный уголок27.

* * *

Главное, что нам следует понять в послойно-разнотемповой системе, — взаимодействие между ее слоями. По мере прогресса в неврологии все больше клинических случаев, как я подозреваю, будут рассматриваться именно с позиций междуслойного взаимодействия в системе.

Вспомним еще раз адмирала Нельсона: хотя мушкетная пуля отстрелила ему руку и ее пришлось ампутировать, всю последующую жизнь он ощущал некое присутствие утраченной конечности. Несмотря на то что участок коры, прежде реагировавший на прикосновение к руке, стал реагировать на прикосновения к лицу, нижележащие области мозга сохраняли ожидания, что этот участок по-прежнему представляет руку. Проще говоря, медленные глубинные слои все еще прочитывали активность в нем как ощущения от руки. И, как часто бывает у перенесших ампутацию, возникает путаница восприятия в форме фантомной чувствительности: адмирал был уверен, что рука все еще существует, — так, во всяком случае, говорили ему глубинные слои мозга. Система с послойной динамикой наиболее эффективно функционирует при изменениях, протекающих нормальными темпами, а резкие, внезапные перемены в строении тела могут спровоцировать непредсказуемые реакции, особенно когда эти перемены происходят со скоростью мушкетной пули.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация