Книга Происхождение альтруизма и добродетели. От инстинктов к сотрудничеству, страница 16. Автор книги Мэтт Ридли

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Происхождение альтруизма и добродетели. От инстинктов к сотрудничеству»

Cтраница 16

Несмотря на свой почтенный возраст, дилемма заключенного была впервые сформулирована в качестве игры лишь в 1950 году двумя — математиками корпорации RAND (Калифорния) Мерриллом Флудом и Мелвином Дрешером. Несколько месяцев спустя Альберт Такер из Принстонского университета представил ее в качестве истории о двух заключенных. Флуд и Дрешер понимали: дилеммы заключенного окружают нас повсюду. Грубо говоря, любая ситуация, в которой вы хотите сделать нечто, но знаете, что если так же поступят все остальные, то это будет ошибкой, скорее всего — дилемма заключенного. (Согласно формальному математическому определению, дилемма заключенного — везде, где искушение больше, чем награда, которая больше, чем наказание, которое больше, чем штраф простофиле, хотя если искушение огромно, игра меняется). Если бы на каждого можно было положиться в том, что он не угонит чужой автомобиль, машины не пришлось бы запирать и удалось бы сэкономить уйму времени и денег на страховку, сигнализацию и тому подобное. Все мы только выиграем от этого. Но в таком доверчивом мире каждый обретет еще больше, если отступит от общественного договора и таки украдет авто. Аналогичным образом, рыбаки только выиграют, если каждый проявит сдержанность и не станет ловить слишком много рыбы. Но если каждый ловит столько, сколько может, проявляющий сдержанность всего-навсего лишается своей доли в пользу более эгоистичного товарища. То есть все мы коллективно расплачиваемся за индивидуализм.

Тропические дождевые леса, как ни странно — результат дилемм заключенного. Деревья тратят огромное количество энергии на рост, а не на размножение. Если бы они могли прийти к соглашению с конкурентами, объявить стволы вне закона и соблюдать максимальную высоту в три метра, все бы от этого только выиграли. Но они не могут.

Таким вот вещам, сведению сложностей жизни к глупой игре, экономисты и обязаны своей дурной славой. Впрочем, суть не в том, чтобы запихнуть всякую проблему реальной жизни в коробку под названием «дилемма заключенного», а в том, чтобы создать идеализированную версию происходящего в условиях конфликта между коллективными и индивидуальными интересами. Затем можно спокойно экспериментировать с идеалом, пока не удастся открыть нечто, заслуживающее внимания, после чего вернуться к реальному миру и посмотреть, проливает ли оно свет на происходящее в действительности.

Именно так поступили с «дилеммой заключенного» (хотя некоторых теоретиков, брыкающихся и вопящих, пришлось втаскивать обратно в реальный мир насильно). Суровый безрадостный вывод, что предательство является единственным рациональным подходом, математиков, разумеется, не устраивал. Поэтому в 1960-х они чуть ли не с маниакальной настойчивостью принялись искать опровержение. И неоднократно заявляли, что нашли таковое, главным образом в 1966 году, когда Найджел Говард переформулировал игру в терминах намерений игроков, а не их действий. Однако предложенное решение наряду со всеми другими оказалось всего-навсего попыткой выдать желаемое за действительное, самообманом. Учитывая начальные условия игры, кооперация просто нелогична.

Этот вывод вызывал глубокую антипатию. Дело было не только в том, что он представлялся абсолютно безнравственным в своих последствиях. Он, казалось, существенно расходился с поведением живых людей. Сотрудничество — обычная черта человеческого общества, а доверие — фундамент социальной и экономической жизни. Разве они нерациональны? Неужели мы вынуждены подавлять свои инстинкты, чтобы быть милыми по отношению друг к другу? Оправдывает ли себя преступление? Честны ли люди только тогда, когда им это выгодно?

К концу 1970-х дилемма заключенного стала олицетворять собой все, что было не так с выпестованной экономистами личной выгодой. Если игра доказывала: с точки зрения индивида, единственным рациональным поступком был эгоистичный, значит, главное допущение являлось неадекватным. Поскольку люди эгоистичны не всегда, они должны руководствоваться не личной выгодой, а общим благом. Поскольку же вся классическая экономика построена на личной выгоде, выходит, все 200 лет ее существования экономисты лаяли не на то дерево.

Теория игр родилась в 1944 году в плодовитом, но «бесчеловечном» мозгу венгерского гения Джона фон Неймана [28] , позже став отраслью математики, в особенности отвечающей потребностям «мрачной науки» экономики. Объяснение просто: эта теория касается той области, где правильность поступков одних определяется действиями других. Что бы ни творилось на свете, имеется всего одно правильное решение примера «2+2». Но вот намерение купить или продать ценные бумаги, например, целиком и полностью зависит от обстоятельств — в частности, от решений других людей. Даже в этом случае, однако, может существовать безопасная линия поведения, стратегия, работающая вне зависимости от действий окружающих. Найти ее в реальной ситуации — такой, как принятие решения об инвестиции — практически невозможно. Хотя это и не означает, что идеальной стратегии вообще не существует. Смысл теории игр в том, чтобы найти универсальный рецепт в упрощенных версиях реального мира. Это назвали «равновесием Нэша» — в честь принстонского математика Джона Нэша [29] , выдвинувшего эту теорию в 1951 году, а в 1994-м, после долгой борьбы с шизофренией, получившего за нее Нобелевскую премию. Вот ее определение: равновесие возникает тогда, когда стратегия каждого игрока является оптимальной реакцией на стратегии, принятые другими игроками, и отклоняться от выбранной стратегии не выгодно никому.

В качестве примера рассмотрим игру, придуманную Питером Хаммерштайном и Рейнхардом Селтеном. Есть два человека, Конрад и Нико; их задача — поделить деньги друг с другом. Конрад делает первый ход и должен решить, как они разделят деньги: пополам (справедливо) или нет (несправедливо). Нико делает второй ход и должен решить, сколько денег они поделят: много или мало. Если Конрад выбирает «несправедливо», он получает в девять раз больше, чем Нико. Если Нико выбирает «много», каждый получает в десять раз больше, чем получил бы при выборе «мало». Конрад может потребовать в девять раз больше, чем Нико, и последний ничего не может с этим поделать: выбирая «мало», он наказывает не только оппонента, но и себя. Следовательно, несчастный Нико не может даже пригрозить наказать Конрада, ибо все его угрозы выбрать «мало» неубедительны. Равновесие Нэша: один выбирает «несправедливо», а другой — «много». Это не идеальный исход для Нико, но это лучшее, что можно сделать в данной ситуации56.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация