Книга Эгоистичный ген, страница 80. Автор книги Ричард Докинз

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Эгоистичный ген»

Cтраница 80

Эта ошибка затрагивает игры лишь определенных типов. В теорий игр различают игры «с нулевой суммой» и «с ненулевой суммой». В играх с нулевой суммой выигрыш одного игрока сопровождается проигрышем другого. К играм этого типа относятся шахматы, поскольку цель каждого игрока состоит в том, чтобы выиграть, т. е. заставить другого игрока проиграть. Однако Парадокс заключенных — это игра с ненулевой суммой. В ней участвует банкомет, выплачивающий деньги, и два игрока, объединившись, могут отправиться в банк, весело смеясь над ним.

Последняя фраза заставляет меня вспомнить восхитительную строчку Шекспира:

Первым делом мы перебьем всех законников

Генрих VI, ч. 2

В том, что называют гражданскими «спорами», на самом деле часто имеется широкий простор для кооперирования. То, что выглядит как конфронтация, можно, проявив немного доброй воли, превратить во взаимовыгодную игру с ненулевой суммой. Возьмем, например, бракоразводный процесс. Удачное супружество-это, безусловно, игра с ненулевой суммой, с бьющим через край взаимным кооперированием. Но даже после того, как брак распадется, имеются всевозможные причины, по которым супружеская пара могла бы выиграть, продолжая кооперироваться и рассматривая свой развод также как игру с ненулевой суммой. Если даже они не считают благополучие своих детей достаточно веской причиной, то следовало бы подумать о том ущербе, который нанесут семейному бюджету гонорары двух адвокатов. Итак, вероятно, разумная и цивилизованная пара начнет с того, что отправится вместе к одному адвокату, не правда ли?

Увы, на самом деле этого никто не делает. Во всяком случае в Англии и до недавнего времени во всех пятидесяти штатах США закон или, что гораздо важнее, собственный профессиональный кодекс адвоката не разрешает им этого. Клиентом данного адвоката может быть только один из супругов. Другому отказывают с порога, и он либо остается без юридической помощи, либо вынужден обратиться к другому адвокату. Вот тут-то и начинается комедия. В разных комнатах, но в один голос, оба адвоката немедленно начинают рассуждать о «нас» и о «них». «Мы», как вы понимаете, относится не ко мне и моей жене: «мы»— это я и мой адвокат, а «они»-моя жена и ее адвокат. Когда дело передается в суд, то оно регистрируется под названием «Смит против Смит». Противостояние принимается за некую данность, независимо от того, действительно ли супруги чувствуют себя противниками или, быть может, они договорились не выходить за рамки благоразумного дружелюбия. И кто выигрывает от того, чтобы относиться к этому как к перебранке: «я выиграл, ты проиграла»? Вероятно, только адвокаты.

Злополучные супруги втянуты в игру с нулевой суммой. Для адвокатов, однако, дело Смит против Смит прекрасная выгодная игра с ненулевой суммой, в которой Смиты обеспечивают выплаты, а два профессионала доят общий счет своих клиентов с помощью тщательно зашифрованного сотрудничества. Один из приемов, используемых ими при этом, заключается в том, чтобы выдвигать предложения, которые, как они оба прекрасно знают, другая сторона не примет. Это побуждает к контрпредложению, которое опять-таки неприемлемо, о чем адвокатам тоже известно. И так это продолжается дальше. Каждое письмо, каждый телефонный разговор между кооперирующимися «противниками» добавляет еще одну пачку денег к их гонорару. В случае удачи вся эта процедура может растянуться на месяцы или даже годы, сопровождаясь соответственным ростом расходов. Адвокаты не встречаются друг с другом, чтобы разработать все это. Напротив, как это ни парадоксально, именно их скрупулезно соблюдаемая обособленность служит главным орудием их кооперирования за счет клиентов. Адвокаты могут даже и не осознавать, что они делают. Как летучие мыши-вампиры, о которых мы поговорим в конце этой главы, они играют по хорошо разработанному ритуалу. Система действует безо всякого надзора или организации. Вся она направлена на то, чтобы втягивать нас в игры с нулевой суммой для клиентов, но весьма ненулевой — для адвокатов.

Способ, который рекомендует Шекспир, слишком радикален. Пожалуй, проще было бы добиться изменения закона. Но большинство членов парламента — юристы по специальности, и по складу ума им ближе игра с нулевой суммой. Трудно представить себе более враждебную атмосферу, чем та, что царит в Британской палате общин. (На судебных заседаниях по крайней мере соблюдаются приличия при прениях сторон. Им и следует это делать, ибо «Мой ученый коллега и я» прекрасно сотрудничают и довольные направляются в банк.) Быть может, законодателей, действующих из самых лучших побуждений, и способных внять голосу совести адвокатов следовало бы обучить начаткам теории игр. Справедливости ради необходимо добавить, что некоторые адвокаты выступают в прямо противоположной роли, убеждая клиентов, испытывающих непреодолимое желание ввязаться в драку «с нулевой суммой», что им лучше было бы достигнуть в суде соглашения, которое принесло бы им ненулевую сумму.

А что можно сказать о других играх, в которые мы играем? Какие из них относятся к играм с ненулевой, а какие-с нулевой суммой? И, поскольку это не одно и то же, какие аспекты жизни мы воспринимаем как нулевую или ненулевую сумму? Какие аспекты человеческой жизни способствуют развитию «зависти», а какие побуждают к кооперированию против «банкомета»? Подумайте, например, о спорах относительно зарплаты и дифференцированной оплаты труда. Когда мы ведем переговоры о том, чтобы нам повысили зарплату, движет ли нами зависть или же мы кооперируемся, чтобы максимизировать наши реальные доходы? Исходим ли мы в реальной жизни, так же как в психологических экспериментах, из допущения, что мы участвуем в игре с нулевой суммой, когда на самом деле это не так? Я просто ставлю эти трудные вопросы. Ответы на них выходят за пределы тематики этой книги.

Футбол — игра с нулевой суммой. Во всяком случае обычно. Иногда он может превратиться в игру с ненулевой суммой. Так случилось в 1977 г. в Английской футбольной лиге (Ассоциация футбола, или соккера; другие игры, называемые футболом, — рэгби, Австралийский футбол, Американский футбол, Ирландский футбол и т. д. — обычно также представляют собой игры с нулевой суммой). Команды, входящие в футбольную лигу, разбиты на четыре дивизиона. Клубы каждого дивизиона играют между собой, набирая очки за каждый выигрыш и каждую ничью в течение данного сезона. Находиться в первом дивизионе престижно, а также прибыльно для клуба, поскольку это обеспечивает большое число зрителей. В конце каждого сезона три клуба первого дивизиона, занявшие последние места, переводят на следующий сезон во второй дивизион. Такое перемещение, очевидно, рассматривается как ужасный удар судьбы, и чтобы избежать его, стоит затратить огромные усилия.

Последняя игра в футбольном сезоне 1977 г. происходила 18 мая. Два из трех кандидатов на вылет из первого дивизиона уже были определены, но третий еще оставался под вопросом. Это определенно должна была быть одна из трех команд: Сандерленд, Бристоль или Ковентри. Таким образом, этим трем командам было за что бороться в ту субботу. Сандерленд играла против четвертой команды (пребывание которой в первом дивизионе не подвергалось сомнению), а Бристоль и Ковентри играли друг против друга. Было известно, что если Сандерленд проиграет, то командам Бристоль и Ковентри достаточно закончить игру вничью, чтобы остаться в первом дивизионе. Если же Сандерленд выиграет, то либо Бристоль, либо Ковентри будет переведена из первого дивизиона. Две решающие игры должны были проходить одновременно. Однако фактически игра Бристоль-Ковентри началась на пять минут позднее. Поэтому результаты игры с участием команды Сандерленд стали известны до окончания игры Бристоль-Ковентри. Это и послужило завязкой всей дальнейшей сложной истории.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация