Подобное писал и Слаткин (Slatkin, 1972): «Понятно, что если в популяции постоянно поддерживается неравновесное сцепление, то на первый план выходят взаимодействия более высокого порядка и хромосома стремится к тому, чтобы действовать как единое целое. То, в какой степени это справедливо для любой конкретной системы, является мерилом того, что же — ген или хромосому — считать единицей отбора, или, если выражаться более корректно, какие части генома можно считать действующими согласованно». А вот еще цитата из Темплтона с соавторами. (Templeton et al., 1976): «…Единица отбора частично является функцией его интенсивности: чем сильнее отбор, тем сильнее геном стремится сплотиться в единое целое». Именно в духе подобных рассуждений я шутливо предлагал назвать свое предыдущее сочинение «Немножко эгоистичный большой кусочек хромосомы и даже еще более эгоистичный маленький кусочек хромосомы» (Dawkins, 1976 а, р.35).
В качестве убийственного довода против теории об отборе репликаторов мне часто указывали на возможность кроссинговера в пределах цистрона. Вот если бы хромосомы были устроены наподобие бус — тогда другое дело: разрывы при кроссинговере возникали бы только между бусинами, и можно было бы надеяться на определение границ дискретных репликаторов в популяции, где количество цистронов представляет собой целое число. Но поскольку обмен участками происходит где угодно, а не только между бусинами, то пропадает и вся надежда на разграничение отдельных единиц.
Подобная критика недооценивает гибкость, присущую понятию репликатор и позволительную для тех целей, ради которых оно было придумано. Как я уже объяснял, нас интересуют не обособленные единицы, а имеющие неопределенную длину участки хромосомы, которые становятся более или менее многочисленными по сравнению с конкурирующими участками точно такой же длины. Кроме того, как напоминает мне Марк Ридли, большинство хромосомных обменов, совершающихся в пределах цистрона, в любом случае неотличимо по своим проявлениям от обменов в промежутке между цистронами. Очевидно, что если наш цистрон оказался в гомозиготе и конъюгирует при мейозе с точно таким же, тогда весь наследственный материал, которым они обменяются, идентичен и кроссинговера с тем же успехом могло не быть вовсе. Если же цистроны, о которых идет речь, гетерозиготны и различаются одним нуклеотидом, тогда любой обмен, совершающийся в пределах цистрона «севернее» этого гетерозиготного нуклеотида, будет неотличим от кроссинговера, произошедшего на северной границе данного цистрона; а любой обмен, совершающийся в пределах цистрона «южнее» этого гетерозиготного нуклеотида, будет неотличим от кроссинговера, произошедшего на южной границе данного цистрона. И только если цистроны различаются в двух точках и обмен происходит на участке между этими точками, в пределах цистрона можно обнаружить кроссинговер. Главная мысль тут в том, что местоположение точки разрыва по отношению к границе цистрона не играет особой роли. Что действительно важно, так это то, где кроссинговер происходит относительно гетерозиготных нуклеотидов. Если, к примеру, случайно так выйдет, что последовательность из шести соседствующих цистронов останется гомозиготной на протяжении всей истории популяции, то обмен, совершившийся в пределах любого из шести этих цистронов, будет по своему эффекту абсолютно равносилен обмену, произошедшему с краю от любого из них.
Естественный отбор может быть причиной изменения частоты встречаемости в популяции только для тех точек, в которых нуклеотиды гетерозиготны. Если между этими точками имеются большие нуклеотидные последовательности, которые одинаковы у всех особей, то материалом для естественного отбора такие последовательности служить не будут, поскольку среди них нечего отбирать. Внимание естественного отбора должно быть приковано к гетерозиготным нуклеотидам. Именно изменения на уровне отдельных нуклеотидов ответственны за эволюционно значимые фенотипические изменения, хотя, конечно, остающаяся неизменной часть генома необходима для формирования фенотипа в целом. Итак, не пришли ли мы к абсурдно редукционистскому reductio ad absurdum? Приниматься ли нам за книгу, озаглавленную «Эгоистичный нуклеотид»? Неужели аденин ведет беспощадную борьбу с цитозином за обладание позицией номер 30004?
Представлять так положение дел, по меньшей мере, бесполезно. Это введет в заблуждение студентов, которые могут подумать, будто бы аденин в каком-то смысле объединился с аденинами из других локусов, и они сообща работают на свою команду. Если только вообще не бессмысленно говорить о том, что пурины и пиримидины соперничают за гетерозиготные локусы, то борьба в каждой точке изолирована от борьбы в других точках. Молекулярному биологу для его собственных важных задач может понадобиться подсчитать, сколько всего в геноме аденинов и цитозинов (Chargaff, цит. по Judson, 1979), но для того, кто изучает естественный отбор, это праздное времяпрепровождение. Если аденин с цитозином и конкуренты, то конкурируют они за каждый локус по отдельности. Им безразлична судьба своих точных копий в других локусах (см. также главу 8).
Однако имеется и более интересная причина отклонить идею об эгоистичном нуклеотиде в пользу более крупного реплицирующегося объекта. Весь смысл нашего поиска «единицы отбора» состоит в том, чтобы найти подходящего актера на главную роль в наших метафорах о предназначении. Мы видим адаптацию и хотим сказать: «Эта адаптация полезна для…» В этой главе мы должны отыскать этой фразе правильное окончание. Общепризнано, что взятое на веру допущение, будто адаптации возникают для пользы вида, приводит к серьезным ошибкам. Надеюсь, в этой книге мне удастся показать, что предположению, будто адаптации существуют для блага индивидуальных организмов, тоже сопутствуют заблуждения, хотя и менее серьезные. Я здесь высказываю мысль, что если уж мы должны считать адаптации возникшими для чьего-то блага, то истинный адресат этого блага — активный репликатор зародышевого пути. И если мы скажем, что адаптации существуют для блага нуклеотида, т. е. мельчайшего репликатора, определяющего фенотипические отличия, существенные для эволюции, — такое утверждение, строго говоря, не будет ложным, вот только пользы от него немного.
Давайте воспользуемся метафорой власти. Активный репликатор — это кусок генома, который оказывает на окружающий его мир фенотипическое влияние, увеличивающее или уменьшающее его встречаемость по сравнению с конкурирующими аллелями. Разумеется, не будет бессмыслицей сказать, что и отдельный нуклеотид обладает такого рода властью в своем мире, однако он располагает этой властью, только будучи встроен в более крупную единицу, поэтому намного целесообразнее говорить о том, что именно эта более крупная единица оказывает влияние и, следовательно, изменяет количество своих копий. Кто-то может подумать, что подобные рассуждения применимы по справедливости и к более крупным единицам — например, всему геному. Это не так, по крайней мере, для организмов с половым размножением.
Мы отказываемся считать репликатором весь геном размножающихся половым путем организмов: слишком велик риск, что он разлетится вдребезги при мейозе. Единичный нуклеотид избавлен от такой проблемы, но, как мы только что видели, порождает другую. О наличии у него фенотипического влияния можно судить только в контексте других нуклеотидов того же цистрона. Бессмысленно говорить о фенотипическом эффекте аденина. При этом абсолютно целесообразно говорить о фенотипических последствиях замены аденина на цитозин в такой-то точке такого-то цистрона. Ситуация с цистроном внутри генома другая, несмотря на внешнюю аналогию. В отличие от нуклеотида, цистрон достаточно велик, чтобы обладать стойким фенотипическим действием, в той или иной степени независимым от того, как он расположен на хромосоме (однако подверженным влиянию других генов в геноме). Для фенотипического действия, которое цистрон оказывает в отличие от своих аллелей, его непосредственное окружение, содержащее другие цистроны, не является столь фатально определяющим. В то же время для фенотипического эффекта нуклеотида контекст — это все.