История теории относительности началась в 1632 году, когда Галилей провозгласил принцип, согласно которому все законы движения и механики (законы электромагнетизма еще не были открыты) остаются одними и теми же во всех системах координат, движущихся с постоянной скоростью друг относительно друга. В своем “Диалоге о двух главнейших системах мира” Галилей хотел защитить идею Коперника о том, что представление о Земле, расположенной в центре Вселенной и находящейся в состоянии покоя, и вращающихся вокруг нее всех остальных телах неправильно. Скептики оспаривали эту точку зрения и говорили, что, если бы Земля двигалась так, как утверждал Коперник, мы бы это почувствовали. Галилей опроверг их доводы, предложив в качестве доказательства провести кристально ясный мысленный эксперимент в каюте плавно плывущего корабля: “Давайте представим себе, что вы с другом заперлись в каюте, расположенной под палубами большого корабля, и вместе с вами там оказалось несколько мух, бабочек и еще каких-нибудь маленьких летающих насекомых. Кроме того, там находится большой сосуд с водой, в котором плавают рыбки. Подвесим бутылку, из которой жидкость капля за каплей вытекает в расположенный под бутылкой широкий сосуд. Когда корабль неподвижен, понаблюдайте внимательно, как маленькие насекомые летают по каюте в разных направлениях с одинаковыми скоростями. Рыбки тоже плавают в разных направлениях с равными скоростями, капли падают прямо в сосуд под бутылкой. И когда вы кидаете какую-либо вещь своему другу, стоящему то по одну, то по другую сторону от вас на одинаковом расстоянии, вам нужно приложить одинаковые усилия, чтобы она долетела до него. Если же вы будете прыгать, отталкиваясь двумя ногами, вы выпрыгнете на одинаковое расстояние в любом направлении. И если вы убедились во всем этом, теперь сделайте так, чтобы корабль плыл с любой заданной вами скоростью, но только равномерно, без качки и рывков. И вы не обнаружите ни малейшей разницы во всех перечисленных явлениях, и ни по одному из этих явлений вы не сможете определить, движется ли корабль или стоит на месте”3.
Лучше принцип относительности нельзя описать – или по крайней мере объяснить, как его применять к системам, движущимся друг относительно друга с постоянной скоростью.
Внутри корабля Галилея можно с легкостью беседовать, поскольку воздух, в котором распространяются звуковые волны, движется плавно вместе с людьми в каюте. Подобным же образом, если один из пассажиров корабля Галилея бросит камешек в сосуд с водой, от места его падения пойдут такие же волны, как если бы этот сосуд стоял на берегу. Это происходит потому, что вода, на поверхности которой распространяются эти волны, плавно движется вместе с сосудом и всем остальным в каюте.
Природа как звуковых волн, так и волн, расходящихся на поверхности воды, легко объясняется с помощью классической механики: это просто перемещающееся колебание некоторой среды. Вот почему звук не может распространяться в вакууме, но может проходить через воздух, воду или металл. Например, в воздухе при комнатной температуре звуковые волны – колебательные возбуждения сжатия-разрежения воздуха – распространяются со скоростью примерно 1260 км/ч.
Внутри корабля Галилея воздух и вода ведут себя так же, как на берегу, потому что воздух в каюте и вода в сосуде движутся с той же скоростью, что и пассажиры. А теперь вообразите, что вы выходите на палубу и рассматриваете волны в океане или же измеряете скорость звуковых волн другого корабля, издающего гудок. Скорость, с которой эти волны приходят к вам, зависит от скорости вашего движения относительно среды (воды или воздуха), в которой они распространяются.
Другими словами, скорость, с которой волны в океане приходят к вам, зависит от того, насколько быстро вы движетесь в направлении источника этих волн или удаляетесь от него. Аналогично, скорость звуковых волн относительно вас зависит от вашего движения относительно воздуха, в котором распространяется эта звуковая волна.
Относительные скорости – ваша и источника – суммируются. Представьте себе, что вы в океане, волны движутся к вам со скоростью 16 км/ч. Если вы вскочите на гидроцикл и направите его на скорости 83 км/ч навстречу волнам, то увидите, что они приближаются к вам и проносятся мимо со скоростью (относительно вас) 99 км/ч. Аналогично, представьте себе, что звук идет к вам из рупора на борту далекого корабля, и в неподвижном воздухе в направлении берега он распространяется со скоростью 1260 км/ч. А если вы вскочите на гидроцикл и помчитесь в направлении этого корабля со скоростью 66 км/ч, звуковые волны будут проноситься мимо вас со скоростью 1326 км/час.
И тогда напрашивается вопрос, который мучил Эйнштейна уже с шестнадцати лет, когда он воображал себя скользящим рядом с лучом света: ведет ли себя свет аналогично?
Ньютон считал, что свет – прежде всего поток частиц, испущенных источником. Но во времена Эйнштейна большинство ученых приняли альтернативную теорию, разработанную современником Ньютона Христианом Гюйгенсом, согласно которой свет нужно считать волной.
К концу XIX века большое количество экспериментов подтвердили правоту волновой теории. Например, Томас Юнг поставил знаменитый эксперимент, который сейчас воспроизводят ученики средней школы и который демонстрирует, что свет, проходящий через две щели, формирует интерференционную картину, напоминающую картину, образованную волнами на поверхности воды, прошедшими через две щели. В обоих случаях горбы и впадины волн, исходящих из каждой щели, встречаясь, в некоторых местах усиливают друг друга, а в других – друг друга гасят.
Джеймс Клерк Максвелл содействовал упрочению этой волновой теории, установив связь между светом, электрическим и магнитным полями. Он вывел уравнения, которые описывали поведение электрических и магнитных полей. Максвелл показал, что эти электромагнитные волны должны распространяться с определенной скоростью – примерно 300 000 км/с
[22]
. Это совпало со значением, которое ученые уже получили в экспериментах для скорости света, и они поняли, что это не простое совпадение4.
Стало ясно, что свет – это та часть электромагнитного спектра, которая воспринимается нашим зрением. А весь спектр включает радиоволны, которые мы сейчас называем AM
[23]
(средние и длинные волны радиоволны с длиной волны порядка километра), FM (короткие радиоволны, длина волны порядка метра) и микроволновое излучение (длина волны порядка сантиметра). При уменьшении длины волны (увеличении ее частоты) электромагнитные волны переходят в видимый диапазон, простирающийся от красного (примерно 700 нм) до фиолетового (примерно 400 нм). Еще более короткие волны попадают в диапазон ультрафиолетовых, рентгеновских волн и гамма-лучей. Когда мы говорим о “свете” или “скорости света”, мы имеем в виду не только видимые глазом, а вообще все электромагнитные волны.