Книга Прокачай свой мозг!, страница 31. Автор книги Роберт Грисбек, Максимилиан Тайхер

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Прокачай свой мозг!»

Cтраница 31

Как могло случиться, что гигантский штаб, не испытывающий недостатка в профессионалах и высокообразованных людях, раз за разом принимал пагубные решения? Похоже, существует какой-то закон природы, который и лег в основу современной теории игр, разработанной Джоном фон Нейманом. Этот феномен иногда называют «западней „Конкорда“» (западней канала Рейн-Майн-Дунай или западней «Трансрапида»), так как расходы на разработку и производство совместного англо-французского сверхзвукового пассажирского самолета были настолько огромны, что любой экономист сразу понял бы: этот проект никогда не окупится. И действительно, «Конкорд» вплоть до самого конца приносил одни убытки. Можно было бы сэкономить намного больше, если бы сразу после завершения конструкторских работ этот проект был списан, а изготовленные опытные образцы переданы техническим музеям. Но этому не суждено было случиться, поскольку речь шла о престиже, а там, где экономика сталкивается с политическими амбициями, наступает катастрофа. Подтверждением этому могут служить войны, банкротства компаний и даже забастовки. Зачастую потери, причиненные забастовкой, настолько велики, что руководству фирмы дешевле было бы сразу согласиться на максимальные требования сотрудников. В свою очередь, участники забастовки теряют из-за отсутствия зарплаты намного больше, чем получат впоследствии, когда их требования будут удовлетворены. Что это? Сумасшествие? Нет, теория Неймана на практике.

Зачем вам 10 евро? Возьмите лучше миллион

Если вам все это кажется сложным, сделаем более простое предложение: выиграйте миллион! Нет, не в передаче «Кто хочет стать миллионером?» (для этого надо самому быть всезнайкой и вдобавок еще иметь такого же друга, которому можно позвонить). Мы не говорим ни о лотерее, ни о тотализаторе. Просто пришлите нам открытку и получите миллион евро. Но, как вы уже наверняка догадываетесь, здесь вновь вступает в игру правило Неймана. Приз достанется только одному человеку, но его размер зависит от количества претендентов. Если бы вы были единственным, кто пришлет открытку, то получили бы миллион. Но вероятность этого крайне низка. Скорее всего, таких наберется много, и миллион будет разделен на количество претендентов. Вскоре от него почти ничего не останется. Если бы редакция газеты Bild задумала разыграть миллион по таким правилам и в этой акции приняла участие всего половина ее читателей, на долю победителя досталось бы целых 30 евроцентов… Конечно, почта неплохо нажилась бы на этом, но кто-то же должен быть в выигрыше.

Какова же оптимальная тактика в подобных играх? В них надо учитывать новый и совершенно неожиданный фактор – мораль. Цель претендентов состоит в том, чтобы получить как можно больше (в идеальном случае – миллион). Цель устроителей акции – заплатить как можно меньше. И эта вторая цель выглядит куда реалистичнее, так как можно смело рассчитывать на людскую жадность. В данном случае жадность пагубна не только с моральной, но и с математической точки зрения. Самым лучшим было бы заранее разыграть среди претендентов право на участие в игре. Например, можно создать игральную кость с количеством граней, равным числу претендентов. Все они будут бросать ее по очереди, и тот, у кого выпадет единица, получит право послать открытку, а все остальные откажутся. Это, конечно, фантазия, поскольку желающих будет настолько много, что количество граней будет стремиться к бесконечности, но замысел вам понятен.

На практике же из теории игр Неймана можно сделать интересные выводы об оптимальном поведении в экономике. Здесь жадность вредна, а мораль приносит выгоду. И не потому, что конкуренты чтят моральные заповеди, а потому, что кооперация себя оправдывает, а конфронтация чаще всего вредит. Главная стратегия теории игр стара как мир, и ее уже не раз формулировали в самых разных выражениях, смысл которых сводится к одному: «Итак во всем, как хотите, чтобы с вами поступали люди, так поступайте и вы с ними» (От Матфея 7:12). Примерно о том же рассуждают Конфуций, Платон, Аристотель и Сенека. «Поступай так, чтобы максима твоего поступка посредством твоей воли должна была стать всеобщим законом природы», – гласит категорический императив Канта. Первоклассную стратегию выигрыша мы можем прочитать на стенах многих туалетов: «Покидая это место, оставьте его, пожалуйста, в том виде, в каком хотели бы его видеть при следующем посещении!»

Следует ли из этого, что добро всегда побеждает? Должен ли экономический выигрыш базироваться на морали? Пожалуй, это будет слишком смелым выводом из теории Неймана. Его необходимо проверить экспериментальным путем.

Дилемма арестантов

В 1950 году два математика, Меррил Флуд и Мелвин Дрешер, впервые предложили логическую дилемму, которая читается как детективный роман. Полиции удается поймать двух гангстеров (назовем их Антоном и Бруно). За ними давно идет охота, но в прошлом они постоянно ускользали от правосудия из-за недостатка улик. Их и в этот раз поймали только на мелком хулиганстве. Они сидят в разных камерах и не имеют возможности общаться. Прокурор делает одному из них предложение: «Если ты сознаешься в преступлениях, которые мы пока не можем доказать, то я тебя отпущу и даже закрою глаза на хулиганство, а твой сообщник получит пять лет тюрьмы. Но это только в том случае, если он не сознается. Если же он тоже напишет явку с повинной, в твоем признании будет мало толку и вы оба сядете на четыре года. Если ты будешь молчать, а твой подельник сознается, мы посадим на пять лет тебя. Но если вы оба будете запираться, то мы отправим обоих за решетку на два года за хулиганство. Твоему сообщнику я предложил то же самое. У вас обоих есть час, чтобы подумать. Решай сам. Через час ты в принципе можешь оказаться на свободе!»

Оба бандита не испытывают теплых чувств друг к другу и хотят отделаться наименьшим наказанием. Какое логическое решение будет для них правильным? Сознаваться или нет?


Таблица 1. Дилемма арестантов

Прокачай свой мозг!

Поразмыслите над этой проблемой. Мы только хотим напомнить еще об одном моменте: если бы речь шла об известной гангстерской парочке Бонни и Клайде, их решение было бы простым и однозначным, а потому правильным. Но там в игру вмешивались чувства…

Ответ (44)

Логично!

Вы полагаете, что подобные теоретические дилеммы не имеют отношения к реальной жизни? Не заблуждайтесь, это и есть реальность! Представьте себе, например, владельцев двух соседних автозаправочных станций. В начале каждого месяца им необходимо принимать решение, по какой цене продавать бензин в течение четырех последующих недель. Конечно, хорошо бы знать, что у конкурента на уме, но подобные вопросы удовлетворительно решаются только в рамках теории игр. Если один из них решит немного снизить цену в расчете на то, что ему удастся продать больше бензина и получить больше выручки, то второму нежелательно идти на поводу, так как в этом случае оба продадут меньше, да к тому же еще и по более низким ценам, чем в предыдущем месяце. Обоим лучше было бы равномерно и понемногу повышать цену и за счет этого увеличивать прибыль. Так почему бы им предварительно не договориться о более высокой цене? Потому, что подобные договоренности запрещены и называются преступным ценовым сговором. Для противодействия таким «оптимальным» решениям и создан специальный антимонопольный орган. Так что если у вас нет шпиона в стане конкурента, осваивайте теорию игр.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация