Некоторые виды несовместимости могут проявить себя еще до стадии имплантации. К примеру, если яйцеклетка несовместима с соматической клеткой, ядро которой в нее перенесли, то ни одна такая яйцеклетка не превратится в эмбрион, даже если соматические клетки были правильно и полностью перепрограммированы. Подобная проблема может возникнуть, к примеру, когда ядерный геном соматической клетки несовместим с митохондриальным геномом яйцеклетки.
Митохондрии – это органеллы, живущие в цитоплазме клетки, и они не входят в состав ядерного генома. Все митохондрии, расположенные во всех клетках организма, происходят от митохондрии яйцеклетки, из которой развился организм. У митохондрии есть свой собственный геном, кодирующий некоторые белки, необходимые для клеточного дыхания (процесса, в ходе которого клетка перерабатывает кислород и простые углеводы в энергию). Другие белки, участвующие в клеточном дыхании, вырабатываются генами, расположенными в ядре. В случае несовместимости митохондриального и ядерного геномов эти гены также могут оказаться несовместимыми. Если же они не будут работать сообща, обеспечивая клеточное дыхание, это может привести к нарушениям обмена веществ, неврологическим заболеваниям и даже смерти. До сих пор все проекты межвидового клонирования включали только перенос ядерной ДНК, но не митохондриальной.
Исследователи из лаборатории Дэвида Рэнда в Брауновском университете продемонстрировали, как несоответствие ядерной и митохондриальной ДНК может привести к появлению необычных фенотипов у в остальном обычных межвидовых гибридов. Ученые из лаборатории Рэнда создали дрозофил, обладающих ядерной ДНК Drosophila melanogaster и митохондриальной ДНК Drosophila simulans – двух видов мушек, разошедшихся около 5,4 миллиона лет назад. Получившиеся в результате мушки с не соответствующими друг другу геномами имели на спинах ворсинки, были в два раза меньше, чем нормальные мушки, страдали пороками развития, плохо размножались и, чего и стоит ожидать при недостаточной выработке энергии, уставали быстрее мушек с совпадающими геномами.
Несоответствие митохондриального и ядерного геномов может стать проблемой для восстановления вымерших видов, но есть и очевидное решение. Если эти митохондрии не подходят, почему не заменить их митохондриями, соответствующими ядерному геному? Или не отредактировать митохондриальный геном, заменив проблемные участки? Предположительно, это можно осуществить теми же методами редактирования, которые мы собираемся использовать для изменения нуклеотидной последовательности ядерного генома. Ни один из этих подходов нельзя назвать простым и ни один пока нельзя осуществить на практике. Однако в теории они оба реализуемы.
Проблемы мамонтов
Теперь, когда я познакомила вас с некоторыми препятствиями, ожидающими нас на стадиях клонирования и внутриутробного развития клонированного животного, давайте вернемся к примеру мамонта. Как я рассказала в предыдущей главе, сейчас у нас имеется технология, позволяющая отредактировать геном слона таким образом, чтобы он содержал по меньшей мере несколько генов мамонта. Допустим, что мы отредактировали геном либо стволовой клетки, либо клетки, которую можно перепрограммировать, превратив в стволовую. Тогда пора переходить к следующему этапу: созданию животного с отредактированным геномом и (будем надеяться) признаками, которые мы собирались возродить.
Чтобы этот этап завершился, клетка должна превратиться в эмбрион, и поскольку мы не можем вырастить слона в лаборатории, этот эмбрион нужно будет пересадить суррогатной матери. Далее зародыш должен имплантироваться в стенку матки и тем самым положить начало беременности. Эта беременность, в свою очередь, должна протекать благополучно и завершиться рождением здорового детеныша, с геномом, содержащим несколько тщательно отобранных и с большим трудом встроенных туда генов мамонта.
Простейший способ превратить отредактированную клетку в эмбрион – это использовать яйцеклетку. Мы знаем, что яйцеклетки содержат белки, активирующие, то есть перезагружающие, дифференцированные клетки, снова превращая их в эмбриональные стволовые. Неудивительно, но для активации отредактированной клетки слона лучше всего подходит слоновья яйцеклетка. Добыть ее не так уж просто. Во время овуляции организм индийской слонихи вырабатывает всего одну яйцеклетку. Эта яйцеклетка проходит по репродуктивной системе в матку, которая, предсказуемо, имеет слоновьи размеры. У небеременной слонихи овуляция происходит один раз в 2–3 месяца. Учитывая малую эффективность ядерного переноса, разумно будет предположить, что, собирая одну яйцеклетку раз в 2 месяца (если нам удастся найти эту яйцеклетку в половых путях слонихи), мы не получим достаточного их количества. Нам понадобятся сотни, если не тысячи, слоновьих яйцеклеток, чтобы наш метод сработал. Откровенно говоря, это кажется нечестным. Слоны изо всех сил стараются размножаться, чтобы поддерживать здоровье своих популяций. Последнее, что им нужно, – это чтобы мы рыскали вокруг их яичников и воровали их драгоценные созревшие яйцеклетки. На самом деле если бы это был единственный способ добыть слоновьи яйцеклетки, я бы посчитала, что исследования для проекта восстановления мамонта нужно немедленно прекратить.
К счастью, похоже, есть и другой путь. В 1998 году исследователи из Университета Пердью и Института репродуктивной медицины при медицинском центре «Методист» в Индианаполисе создали мышей, организмы которых способны вырабатывать слоновьи яйцеклетки. Руководитель исследования, доктор Джон Кристер, искал способ увеличить скорость размножения видов, находящихся под угрозой исчезновения, и надеялся, что хорошим началом будет убедить лабораторных мышей выращивать слоновьи яйцеклетки. Ученые из его группы пересадили лабораторным мышам участки ткани яичников (ткань, в которой содержатся незрелые яйцеклетки), взятые у трех трупов южноафриканских слоних. У нескольких из этих мышей образовались фолликулы, вырабатывающие яйцеклетки, и спустя 10 недель один из этих фолликулов породил слегка деформированную слоновью яйцеклетку. Кристер с коллегами не пытались оплодотворять эту яйцеклетку спермой слона, так что нельзя сказать, развился бы из нее жизнеспособный эмбрион или нет. Но это хороший старт.
Будем надеяться, что ученым удастся изобрести эффективный способ получать большое количество слоновьих яйцеклеток, не подвергая никаких слонов риску. Затем мы смогли бы собрать тонну (возможно, буквально) слоновьих яйцеклеток, удалить из них ядра и вставить на их место другие, содержащие отредактированные нами геномы. Затем мы сможем расслабиться, позволив перепрограммирующей магии яйцеклеток вступить в дело. Если этот этап пройдет благополучно и в результате мы получим жизнеспособные, развивающиеся эмбрионы слонов (со слегка модифицированными геномами), мы перенесем эти эмбрионы в матки взрослых слоних, где они смогут развиться в новорожденных слонят (со слегка модифицированными геномами).
Вход в матку слонихи прикрыт плевой, называемой гименом. У слоних гимен остается на месте в течение всей беременности, разрывается во время родов, а затем вырастает заново во время подготовки организма к следующим родам. Чтобы у суррогатной матери-слонихи развилась здоровая беременность, эмбрион и тот инструмент, которым его доставят в матку, должны пройти сквозь единственное отверстие в гимене – четырехмиллиметровое окошко, предназначенное только для проникновения спермы, – не повредив плеву и не поставив тем самым беременность под угрозу.