Ошибка прокурора. Допустим, в суде вы услышали показания, которые сводятся к следующему: 1) образец ДНК, найденный на месте преступления, совпадает с результатами анализа ДНК обвиняемого и 2) существует лишь один шанс из миллиона, что образец ДНК, найденный на месте преступления, совпадет с образцом ДНК, взятым у кого-либо другого (не у обвиняемого). (Ради простоты будем полагать, что вероятности, на которые опирается обвинение, соответствуют действительности.) Готовы ли вы вынести вердикт «виновен» на основе таких доказательств?
Надеюсь, вы не станете торопиться.
Ошибки обвинения случаются, когда контекст статистических доказательств игнорируется. Ниже описаны два сценария, каждый из которых может объяснить доказательства виновности обвиняемого, базирующиеся на результатах анализа ДНК.
Обвиняемый 1. Этот обвиняемый – влюбленный, отвергнутый своей жертвой, – был схвачен полицией за три квартала от места преступления; при нем было найдено орудие убийства. После ареста у него был взят образец ДНК, который совпал с образцом ДНК, взятым с волоска, найденного на месте преступления.
Обвиняемый 2. Этот обвиняемый был осужден несколько лет назад за аналогичное преступление, совершенное в другом штате. Когда суд признал его виновным, у него взяли образец ДНК, который был включен в общенациональную базу данных ДНК (в ней хранятся образцы ДНК более миллиона опасных уголовных преступников). Образец ДНК, взятый с волоска, найденного на месте преступления, сравнили с образцами, хранящимися в базе данных, и обнаружили совпадение с ДНК обвиняемого 2. Однако следствию не удалось обнаружить какую-либо связь последнего с жертвой преступления.
Как указывалось выше, в обоих случаях прокурор может с полным основанием заявить, что образец ДНК, взятый с места преступления, совпадает с образцом ДНК обвиняемого, и подчеркнуть, что существует лишь один шанс из миллиона, что он может совпасть с образцом ДНК какого-либо другого человека. Однако когда речь идет об обвиняемом 2, вероятность того, что он может оказаться тем самым случайным «другим человеком», одним из миллиона, образец ДНК которого по чистой случайности похож на ДНК подлинного убийцы, весьма высока. Поскольку шансы найти случайно совпадающий образец ДНК среди миллиона других образцов относительно высоки, если вы ищете его в базе данных, насчитывающей более миллиона образцов.
Возврат к среднему. Возможно, вы слышали о так называемом проклятии Sports Illustrated, в результате которого спортсмены или команды, фотографии которых помещались на обложке журнала Sports Illustrated, впоследствии снижали свои спортивные достижения. Одно из объяснений этого феномена заключалось в том, что размещение фотографии спортсмена на обложке издания неблагоприятно сказывается на его последующих спортивных показателях. Более правдоподобным, с точки зрения статистики, будет объяснение, что команды и спортсмены обычно появляются на обложке Sports Illustrated после того, как добьются выдающихся успехов (например станут олимпийскими чемпионами), поэтому вполне естественно, что, пройдя пик физической формы, они демонстрируют результаты, близкие к средним. Это явление называется возвратом к среднему. Теория вероятностей говорит о том, что любой «отщепенец» – наблюдение, существенно отклоняющееся от среднего значения в том или ином направлении, – зачастую сопровождается исходами, более близкими к долгосрочному среднему значению.
Тенденция возврата к среднему позволяет объяснить, почему Chicago Cubs
[33] всегда платит огромные суммы за так называемых свободных агентов, которые впоследствии разочаровывают болельщиков вроде меня. Игроки могут выторговать у Chicago Cubs высокие зарплаты после одного-двух необычайно удачных для себя сезонов и, одевшись в форму Chicago Cubs, вовсе не обязательно начинают играть хуже (правда, я отнюдь не исключаю и такой вариант); скорее, Chicago Cubs платит за них огромные деньги по окончании какого-то особенно удачного для этих суперзвезд периода – года или двух, – после чего их спортивные результаты (уже в ходе выступлений за Chicago Cubs) возвращаются к неким средним показателям.
То же явление объясняет, почему когда некоторые учащиеся сдают какой-либо экзамен гораздо лучше, чем обычно, в ходе его повторной сдачи они демонстрируют худшие результаты, а у учащихся, которые сдают экзамен хуже обычного, при его повторной сдаче результаты оказываются лучше. Такая взаимосвязь наталкивает на мысль, что достижения – как интеллектуальные, так и физические – представляют собой сочетание труда (связанного со способностями данного человека) и некоторого элемента везения (или невезения). В любом случае можно допустить, что тем, кто длительное время демонстрировал высокие результаты, сопутствовала удача; а тем, у кого показатели были гораздо ниже среднего, наверное, в какой-то мере не везло. (Что касается экзаменов, то ученики иногда пытаются угадать правильный ответ – а здесь уже все полностью зависит от везения; когда речь идет о футболе, мяч, посланный нападающим в сторону ворот противника, может оказаться в воротах только потому, что по пути заденет ногу кого-либо из игроков команды противника.) Когда период сильного везения или невезения заканчивается – а рано или поздно это неизбежно происходит, – достигнутые результаты становятся ближе к среднему.
Представьте, что я пытаюсь сформировать команду подбрасывателей монет, основываясь на ошибочном предположении, что способности в этом деле играют большую роль. После того как я увидел студента, у которого шесть раз подряд выпал орел, я предлагаю ему десятилетний контракт на 50 миллионов долларов. Разумеется, я испытаю огромное разочарование, когда окажется, что на протяжении этих десяти лет выпадение орла придется лишь на 50 % подбрасываний монетки.
На первый взгляд возврат к среднему вступает в противоречие с «заблуждением игрока». После того как у моего студента шесть раз подряд выпал орел, можно ли утверждать, что на седьмой раз он «обязан» выбросить решку? Вероятность того, что на седьмой раз выпадет решка, такая же, как и всегда, – ½. То обстоятельство, что у студента несколько раз подряд выпал орел, вовсе не повышает шансы на выпадание решки. Каждое подбрасывание монетки является независимым событием. Однако мы вправе рассчитывать на то, что результаты последующих подбрасываний будут соответствовать не прошлой картине, а тому, что предсказывает нам теория вероятностей (то есть примерно одинаковые шансы на выпадание орлов и решек). Вполне возможно, что тот, у кого несколько раз подряд выпал орел, в ходе последующих 10, 20 или 100 подбрасываний начнет раз за разом выбрасывать решку. И чем больше подбрасываний он выполнит, тем ближе окончательный их результат будет к соотношению 50 на 50, то есть к среднему результату, который предсказывает нам закон больших чисел. В противном случае у нас будут все основания искать доказательства мошенничества.
Кстати, исследователи задокументировали так называемый феномен Businessweek. Когда главам компаний вручают престижные награды (в том числе еженедельник Businessweek присваивает звание «Лучший менеджер»), как правило, в течение трех последующих лет эти компании ухудшают показатели (в частности, такие как учетная прибыль и цена акций). Однако, в отличие от упоминавшегося выше эффекта Sports Illustrated, «феномен Businessweek» представляет собой нечто большее, чем возврат к среднему. По словам Ульрики Малмендьер и Джеффри Тейта, экономистов Калифорнийского университета в Беркли и UCLA соответственно, когда главы компаний обретают статус «суперзвезды», внезапно свалившаяся на них слава начинает отвлекать их от дел
{49}. Они пишут мемуары. Их приглашают в советы директоров других компаний. Они ищут для себя так называемых статусных (то есть молодых и эффектных) жен. (Упомянутые мною авторы предлагают лишь первые два объяснения, однако последнее мне также кажется вполне правдоподобным.) Малмендьер и Тейт пишут: «Полученные нами результаты свидетельствуют о том, что культура суперзвезд, искусственно формируемая средствами массовой информации, ведет к более глубоким изменениям поведения, чем обычный возврат к среднему». Иными словами, когда фотография главы компании появляется на обложке Businessweek, пиши пропало, то есть быстро продавай акции этой компании.