Книга Сумма биотехнологии. Руководство по борьбе с мифами о генетической модификации растений, животных и людей, страница 61. Автор книги Александр Панчин

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Сумма биотехнологии. Руководство по борьбе с мифами о генетической модификации растений, животных и людей»

Cтраница 61

Еще одну замечательную идею с использованием флуоресцентных белков придумала группа молекулярных биологов из Гарварда во главе с Джефом Лихтманом и Джошуа Сейнсом. В 2007 году они опубликовали в журнале Nature статью о новом методе исследования связей между нервными клетками мозга — Brainbow™ (от слов brain — «мозг» и rainbow — «радуга», то есть «мозговая радуга»). Метод основан на том, что в результате особой рекомбинации в отдельных нервных клетках генетически модифицированного организма оказывается свой уникальный набор генов флуоресцентных белков. Разные соотношения красных, зеленых и синих белков создают уникальные цвета, поэтому отдельные нейроны и их отростки окрашиваются по-разному. Это позволяет создавать удивительной красоты изображения структур мозга и видеть, какие нервные клетки соединены отростками.

Но вернемся к нашей текущей задаче — создать работающую плазмиду с флуоресцентным геном. Сначала мы спланируем ее на компьютере, а потом рассмотрим, как получить соответствующую последовательность ДНК в пробирке. В конце мы перенесем плазмиду в бактерию. Давайте выберем предложенный ген GFP или его аналог, цвет и яркость которого нам больше подходят, и последуем дальше.

Кроме гена GFP, нам понадобится ген, придающий бактерии устойчивость к какому-нибудь антибиотику. Такие гены могут кодировать белки, разрушающие или инактивирующие антибиотик, не впускающие его в клетку и так далее. Примеров и механизмов устойчивости известно множество, причем от разных антибиотиков защищают разные механизмы. После того как мы генетически модифицируем наши бактерии, мы захотим избавиться от тех, которые модифицировать не удалось, и антибиотик нам в этом поможет.

Для того чтобы гены работали, к ним нужно подобрать правильные регуляторные участки — промоторы и операторы, о которых мы говорили, обсуждая «синтаксис жизни». Выбор промотора зависит от того, какой организм мы модифицируем и хотим ли мы, чтобы ген работал постоянно или при определенных условиях. У бактерий и эукариот РНК-полимеразы разные и используют разные промоторы. Для того чтобы ген работал в клетках бактерий, перед ним часто ставят промотор бактериофага T7. Бактериофаги пытаются заставить бактериальную клетку полностью переключиться на производство вирусных РНК и белков, поэтому их промоторы очень эффективные (сильные) — с прилежащих к ним генов считывается много РНК. Если мы используем промотор T7, в нашей плазмиде должен быть еще один ген, а именно ген РНК-полимеразы бактериофага Т7, которая будет этот промотор обслуживать (связывать). Этот ген можно поставить под обычный бактериальный промотор. Известно множество разных промоторов, как сильных, так и слабых, а их последовательности можно найти в открытых базах данных и в научных публикациях. Ниже приведена последовательность промотора T7.

Сумма биотехнологии. Руководство по борьбе с мифами о генетической модификации растений, животных и людей

Для того чтобы синтез РНК в конце наших генов останавливался, после генов желательно разместить участки, которые называются терминаторами. Достигнув их, РНК-полимераза будет отсоединяться, прекращая синтез РНК. Это как знак пунктуации — точка в конце предложения. Для завершения работы над плазмидой потребуется еще один участок, который называется «ориджин репликации» — место, куда садится бактериальная ДНК-полимераза. Только при наличии такого участка плазмида сможет размножаться внутри бактерий. Наконец, между различными генами мы вставим небольшие участки ДНК произвольных последовательностей, чтобы отделить гены друг от друга.

Проект нашей плазмиды готов — пора создавать ее в пробирке. Сделать это можно несколькими способами. В принципе можно заказать плазмиду у какой-нибудь биотехнологической компании, которая сделает ее по нашим чертежам, используя современное оборудование и методы. Когда-нибудь в будущем устройства для синтеза произвольных последовательностей ДНК, в том числе плазмид, станут доступными для большинства людей, но пока что эти приборы очень дорогие. Здесь, конечно, ощущается некоторое жульничество. Что это за генные инженеры, которые не могут сами взять и все собрать?

Конечно, плазмиду можно собрать и самостоятельно, если она состоит из фрагментов других, уже готовых плазмид, геномов вирусов или бактерий, которые у нас хранятся в запаснике. Так поступали ученые, получившие от Прэшера ген GFP, — совмещали готовый ген с уже имевшимися генетическими конструкциями. Процесс сборки плазмиды можно сравнить с тем, как раньше писали анонимные письма, составляя тексты из слов, вырезанных из газет на свежем листе бумаги. Листом бумаги может выступить какая-нибудь существующая распространенная плазмида.

В арсенале генного инженера есть целый набор белков-ферментов, умеющих разрезать и сшивать молекулы ДНК. Как и GFP, эти ферменты были придуманы не учеными, а различными живыми организмами в процессе эволюции, а мы лишь позаимствовали их, приспособив под собственные нужды. Например, белок EcoR1, выделенный из кишечной палочки, относится к группе ферментов, разрезающих ДНК, которые называются рестриктазами. EcoR1 разрезает участок молекулы ДНК, если он выглядит так:

Сумма биотехнологии. Руководство по борьбе с мифами о генетической модификации растений, животных и людей

Причем разрезание происходит после буквы G верхней цепи и перед буквой G нижней цепи, как показано ниже.

Сумма биотехнологии. Руководство по борьбе с мифами о генетической модификации растений, животных и людей

Полученные концы молекул называются «липкими», потому что они комплементарны друг другу и охотно готовы слипнуться обратно, но для того, чтобы их снова сшить вместе, нам потребуется еще один фермент — ДНК-лигаза. Ученые нашли уже сотни разных видов рестриктаз, которые могут разрезать совершенно разные фрагменты ДНК. Некоторые рестриктазы узнают короткие (часто встречающиеся) последовательности. С их помощью молекула ДНК будет разрезана сразу во многих местах, и получатся короткие фрагменты. Рестриктазы, узнающие длинные последовательности нуклеотидов, используются, чтобы разрезать ДНК на более крупные куски. Одни рестриктазы разрезают ДНК в том участке, который они непосредственно распознают, другие могут делать разрез на некотором расстоянии от узнаваемого ими места. Бывает, что рестриктазы оставляют не «липкие» концы, а «тупые», как показано ниже.

Сумма биотехнологии. Руководство по борьбе с мифами о генетической модификации растений, животных и людей

Вырежем нужный нам фрагмент ДНК с помощью двух рестриктаз. Добавим вырезанный фрагмент к плазмиде, в которой были сделаны разрезы такими же рестриктазами. «Липкие» концы плазмиды и нашего фрагмента сблизятся по принципу комплементарности, а ДНК-лигаза их сошьет. В итоге мы получим плазмиду со вставкой.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация