Книга Микробы хорошие и плохие. Наше здоровье и выживание в мире бактерий, страница 46. Автор книги Джессика Снайдер Сакс

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Микробы хорошие и плохие. Наше здоровье и выживание в мире бактерий»

Cтраница 46
Устойчивость хоть лопатой загребай

В распоряжении Джерри Райта, главы Противомикробного исследовательского центра Университета Макмастера в Гамильтоне (провинция Онтарио, Канада), имеется оборудованная по последнему слову техники лаборатория, в которой есть все, что может понадобиться разработчику новых медикаментов, включая стоящий 15 миллионов долларов США аппарат для высокоскоростного скрининга, позволяющий одновременно проверять эффективность действия десятков потенциальных медикаментов на сотни бактериальных мишеней. Однако Райт убедился, что технологии XXI века бледнеют перед лицом изящных механизмов создания антибиотиков, которые можно наблюдать в комке грязи.

“Лучшим умам синтетической химии потребовались годы неимоверных усилий на получение даже в малых количествах таких структурно сложных антибиотиков, как ванкомицин, – объясняет он. – Но многие разновидности бактерий могут делать это с легкостью”. Особый интерес у Райта и его команды из Противомикробного центра вызывают стрептомицеты (Streptomyces) – обширный род почвенных бактерий, давно привлекавших внимание ученых своей способностью образовывать сложные колонии из длинных нитевидных клеток с напоминающими плодоножки стебельками, несущими споры. На определенном этапе эти производящие антибиотики бактерии пополнили наш медицинский арсенал дюжиной с лишним новых классов препаратов, в том числе стрептомицинами, тетрацикли-нами, неомицинами, эритромицинами и ванкомицинами.

В подземном мире микробов эти биохимические соединения, судя по всему, играют две разные роли. Результаты ряда исследований указывают на то, что при низких концентрациях они работают как сигнальные молекулы, позволяя бактериальным клеткам ощущать присутствие других клеток собственного и других видов и реагировать на него60. При более высоких концентрациях они могут играть более знакомую нам роль антибиотиков как ядов, оттесняя конкурентов в бесконечной толкотне сложных микробных сообществ, повсеместно, от пустынь нашей планеты до горных вершин, пропитывающих песок и почву.

Райт начал исследования генов стрептомицетов в середине девяностых. Цель исследований состояла как раз в том, чтобы узнать у этих бактерий некоторые трюки, полезные для разработки лекарственных препаратов. Райт и его аспирант Кистофер Маршалл сосредоточились в особенности на одном отрезке хромосомы, принадлежащей бактерии Streptomyces toyocaensis, о котором было известно, что он задействован в синтезе тейкопланина – антибиотика, близкородственного ванкомицину. Результатом этого исследования стал каталог из нескольких десятков генов, в числе которых был и нежданный подарок судьбы – набор генов самосохранения, защищающих клетки S. toyocaensis от их собственного яда.

Райта не удивило, что эти гены устойчивости оказались перемешаны у бактерии с генетическими чертежами аппаратуры для производства яда, позволяя микробу эффективно координировать выработку “противоядия”, не менее важную, чем синтез самого яда. Но чего Райт не ожидал, так это того, что кластер из пяти генов устойчивости, выделенный им и Маршаллом из данного обитателя грязи, казался до ужаса знакомым. Любой микробиолог, работавший с внутрибольничными супермикробами, такими как устойчивые к ванкомицину энтерококки, немедленно узнал бы эти гены: один – чтобы срезать места связывания антибиотика на грамположительной клеточной стенке, еще два – чтобы изготавливать устойчивые к антибиотику детали для заделывания возникающих при этом в стенке щелей, и последняя пара – регуляторные гены, позволяющие включать первые три в случае надобности, когда поблизости объявится ванкомицин или какой-либо из его химических родственников.

Райт и Маршалл воспользовались ДНК-зондами, чтобы выудить те же самые гены устойчивости у других стрептомицетов. Они обнаружили эти гены у выделяющего ванкомицин Streptomyces orientals, а также у полудюжины других штаммов и видов, производящих химически родственные ванкомицину антибиотики61. “Тут-то мы и хлопнули себя по лбу, – говорит Райт. – Если бы мы только провели такой эксперимент пятнадцать лет назад, когда началось широкое применение ванкомицина, мы бы узнали, какой именно механизм устойчивости придет вслед за этим антибиотиком в наши поликлиники и больницы”.

Учитывая повсеместное присутствие стрептомицетов в почве, Райт заинтересовался, что еще можно накопать в подобной грязи. Следующий этап его исследования был, по его словам, смехотворно прост для ученого, имеющего в своем распоряжении новейшую аппаратуру на много миллионов долларов: он был “весь выполнен на оборудовании, доступном и сотню лет назад”. Отправляясь на любую научную конференцию или просто в поход по лесам со своими детьми, он всегда привозил оттуда полиэтиленовый пакет на “молнии”, заполненный почвой, будь то засыпанный листьями лесной суглинок или усеянная окурками земля с клумбы перед конференц-центром. После чего он велел своим студентам и аспирантам проводить скрининг добытых образцов в поисках стрептомицетов и проверять устойчивость этих бактерий к набору из двадцати одного антибиотика разных классов. Студентов и аспирантов он тоже просил, когда те отправлялись домой на каникулы, набивать свои рюкзаки пластиковыми пакетами и привозить эти пакеты обратно с образцами почвы. За следующие два года в его лаборатории скопилась коллекция, где был и суглинок из прерий Саскачевана, и глина с автостоянок Торонто, и удобренная почва из садов на берегах Ниагары, и небольшой кусок Канадских Скалистых гор. Младший брат Райта, работающий полицейским в глуши, на границе Онтарио и Манитобы, прислал ему даже оттаявший образец мерзлой почвы с северного фронтира. “У нас была грязь со всей страны, от Ванкувера до Галифакса”, – говорит Райт.

Студентки Ванесса Д’Коста и Кэтрин Макгран выполнили непростую лабораторную работу по выделению нитевидных спорообразующих стрептомицетов из накопленных образцов почвы. Они получили коллекцию из почти пятисот штаммов и видов, в том числе никогда ранее не выделявшихся. Самый впечатляющий результат состоял в том, что все эти микроорганизмы оказались устойчивыми, причем не только к своим собственным характерным антибиотикам, но и ко многим другим. Все они без исключения могли переваривать, деактивировать, выключать, выводить из клетки или каким-то иным способом нейтрализовать многие антибиотики. В среднем каждый из этих стрептомицетов проявлял устойчивость к семи или восьми антибиотикам, а многие могли устоять против четырнадцати или пятнадцати. В ходе всего исследования была обнаружена устойчивость к каждому из двадцати одного проверенного антибиотика, в число которых входили и такие давние стандартные препараты, как тетрациклин и эритромицин, и такие многообещающие новые лекарства, как синерцид, укротитель VRE, а также тигацил и кубицин, на которые возлагались большие надежды в борьбе с MRSA62, Еще удивительнее было то, что многие из исследованных микроорганизмов оказались устойчивыми к целиком и полностью синтетическим антибиотикам, таким как ципрофлоксацин и превозносимые до небес рекламой новые чудо-лекарства телитромицин и линезолид63 – вещества, не похожие ни на одно соединение, с которым микроорганизмы могли встречаться в природе.

В 2006 году Райт опубликовал полученные его командой результаты в авторитетном журнале Science, в статье, озаглавленной “Выборочное исследование антибиотического резистома”64. Многие ученые высказывали свое удивление по поводу того, что бактерии оказались способны к нейтрализации более дюжины синтетических и полусинтетических антибиотиков, но Райт говорит, что он ничего другого и не ожидал: “Устойчивость к антибиотикам можно выработать многими разными способами, и среди них немало довольно неспецифичных. Например, откачивающие насосы будут выводить из клетки едва ли не любое подозрительное вещество”. Особенно интересно, что команде Райта встретилось несколько ранее неизвестных механизмов устойчивости. Более половины исследованных бактерий синтезировали новый для науки фермент, расщепляющий как синерцид, так и рифампицин (незаменимое средство для лечения туберкулеза). Другие бактерии оказались способны нейтрализовать телитромицин с помощью невиданного ранее трюка: присоединяя определенный углевод к химическому скелету антибиотика и тем самым лишая его противобактериального эффекта.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация