Книга Атомы у нас дома. Удивительная наука за повседневными вещами, страница 49. Автор книги Крис Вудфорд

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Атомы у нас дома. Удивительная наука за повседневными вещами»

Cтраница 49

Как работают цифровые технологии?

Во всех цифровых устройствах, от мобильных телефонов и плееров до вычислительных машин и компьютеров, вся «фишка» заключается в преобразовании аналогового сигнала в цифровой и обратно. Это кажется простым, если речь идет о росте или весе человека и представлять нужно всего одно значение. Но как быть с «измерениями» «Моны Лизы»? Как можно перевести эти измерения в цифровой вид, чтобы хранить их в компьютере?

Прежде всего вы переведете в «цифру» не одно число, а миллионы. Этот процесс называется дискретизацией. Он подразумевает деление непрерывной информации на маленькие кусочки, их измерение, превращение измерений в числа и выстраивание цифровых последовательностей. «Мону Лизу» мы можем, например, разделить на 1000 колонок и 1000 рядов, или на миллион маленьких квадратиков. Мы способны измерить среднюю цветонасыщенность и освещенность каждого квадрата (обозначив оба показателя цифрами) и записать эти цифровые последовательности слева направо и сверху вниз. Это превратит одно изображение в 2 000 000 чисел (или одно число, состоящее из 2 000 000 цифр), которые относительно легко хранить в компьютере или «прогонять» по линии телефонной связи. Аналоговое изображение становится похожим на карту двоичных цифр, обозначающих «включение-выключение», или битовую карту (набор последовательно записанных двоичных разрядов).

Посмотрим, как дискретизация работает в цифровых фотокамерах и mp3-плеерах.

Цифровые фотокамеры

Старомодные фотоаппараты имели зеркальные линзы и створки затвора, которые раскрывались на незначительный промежуток времени, чтобы «засветить» кусочек целлулоидной пленки, покрытой химическим составом с содержанием серебра. Свет превращает кристаллики этого вещества в песчинки серебра, которые группируются так, что освещенные участки пленки затемняются, а неосвещенные остаются светлыми. Иными словами, процесс съемки классическим фотоаппаратом начинался с создания на пленке черно-белого изображения, называемого негативом. При печати на фотобумаге происходит обращение негатива. Темные участки становятся светлыми и наоборот. В результате «позитивная» печать создает оригинальное изображение.

Цифровая камера работает иначе, используя интегральные схемы, состоящие из светочувствительных микросхем, которые называются ПЗС-матрицами (приборами с зарядовой связью). В отличие от «засвеченного» кусочка фотопленки, который становится аналоговым отображением объекта, ПЗС-матрица разделена на миллионы светочувствительных точек, или пикселов, каждая из которых измеряет силу света, падающую на нее, и отображает в виде числа. Так ПЗС-матрица преобразует аналоговое изображение в цифровую фотографию.

МР3-плееры

Цифровая камера использует ПЗС-матрицу для дискретизации негативного пространства (того, что окружает объект) и самого объекта съемки. Записывающее устройства для mp3-дисков дискретизирует звуки на протяжении какого-то времени. Представьте себе, что вы хотите оцифровать запись со старой виниловой пластинки Rolling Stones. Вы можете сделать запись с динамиков, поставив перед ними микрофон и подсоединив его к компьютеру, который воспримет аналоговые звуковые волны. С помощью соответствующих программ вы можете измерять эти звуки с частотой дискретизации 44 000 раз (выборок) в секунду [197] и перевести их в цифровой вид. Файлы mp3 или mp4 как раз и являются такими цифровыми цепочками.

Не «зацикливаться» на качестве?

Аналоговая или цифровая копия никогда не смогут сравниться с оригиналом. Или смогут? Когда цифровая фотография только набирала популярность, многие считали, что старые (аналоговые) фотокамеры дают гораздо более качественное изображение. И они были правы. Теперь уже уловить разницу почти невозможно, даже профессиональные фотографы изменяют своим привычкам. Ведь новейшие цифровые камеры используют гораздо более высокую частоту дискретизации объектов съемки. Их ПЗС-матрицы имеют миллионы светочувствительных точек – пикселов. Цифровая камера в 10 мегапикселов раскладывает изображение на 10 млн измеряемых точек. По сравнению с еще недавно считавшимися передовыми цифровыми камерами с 2 мегапикселами это пятикратное увеличение точности изображения и разрешения. А если провести поиск в интернете, то можно выяснить, что лучшие классические зеркальные фотокамеры имели разрешающую способность от 10 до 50 мегапикселов (хотя, конечно, использование разных типов пленки и фотопечати могло это разрешение несколько снизить). Так что даже средние современные цифровые камеры уступают классическим аналоговым по разрешающей способности, хотя наш глаз разницу уже практически не замечает [198].

То же можно сказать и о музыкальных файлах mp3. Чем выше частота дискретизации, тем ближе цифровая запись к оригиналу и тем выше ее качество. Загвоздка в том, что с увеличением этой частоты будет расти и объем цифрового файла. Именно поэтому высококачественные файлы mp3 больше по размерам, дольше загружаются и быстрее заполняют память плеера.

Как происходит дискретизация в музыке. Предположим, у нас есть оригинальный аналоговый звуковой сигнал, длящийся шесть секунд. Если мы хотим превратить его в цифровой файл, мы должны дискретизировать его: последовательно измерить каждый участок звуковой волны (произвести выборку) и превратить каждую выборку в двоичную последовательность. Для этого нам нужно произвести шесть измерений, но каждое из них будет довольно грубым. Что если измерений будет 12? Их точность повысится, но нам нужно будет вдвое больше места, чтобы их хранить. Если мы еще раз увеличим частоту измерений, то получим еще более точную картину первоначального звука, хотя каких-то деталей будет еще не хватать. В этот раз будет 24 измерения, и файл окажется в четыре раза больше изначального. Таким образом, здесь постоянно происходит борьба между качеством файла и его размером.

Чем же хороша цифра?

Чем объяснить всеобщее помешательство на цифровых технологиях? Может, мы оцифровываем так много информации, потому что просто оказались на это способны? И если это так, то отчего так происходит?

В цифровых технологиях много полезного. Когда вы звоните по мобильному телефону, ваши слова путешествуют в пространстве в виде цифр (битов). Звук четкий, ведь передавать и принимать цифры легче, поскольку они не искажаются по пути [199]. К тому же цифровые телефонные разговоры оказываются закодированными, что делает невозможным их подслушивание и посмеивание над чепухой, которую вы несете. Переговоры по старым аналоговым телефонам можно было легко подслушивать, перехватывая электромагнитные волны при помощи сканера. Конечно, это не критично для простых людей вроде нас, но крайне важно для шпионов, любвеобильных актеров и изменчивых политиков [200]. Другое явное достоинство цифровой информации заключается в том, что она занимает очень мало места при хранении. Вы можете закачать 1000–2000 электронных книг в обычную «читалку» (примерно 40 полок бумажных книг, или пять плотно набитых книжных шкафов). Если для облегчения подсчетов мы предположим, что обычное устройство для чтения электронных книг может вместить порядка 1500 книг, то весь фонд Библиотеки Конгресса, который насчитывает аж 36 млн книг, можно уместить в 20 000 таких устройств, то есть в 200 стопках по 100 штук, для чего понадобится всего лишь небольшая комната [201]. Кроме того, следует помнить, что в объеме «читалки» основное – это экран, пластиковый корпус и батарея. Ее «сердце» – интегральная микросхема с памятью – занимает немного места. Если действительно захотеть, то всю информацию из Библиотеки Конгресса можно сжать в один диск на 40 терабайт памяти (40 трлн байт), который был бы размером со средний атташе-кейс.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация