Когда спортсмены, отстраненные от соревнований за применение допинга, возвращаются в спорт, одна из основных проблем заключается в том, чтобы установить, не помогает ли им до сих пор эффект от препаратов, незаконно принимавшихся ими в прошлом. Доказать это сложно. Еще сложнее будет со стимуляторами, воздействующими на мозг. Группа нейробиологов из Университета Джонса Хопкинса в Балтиморе (США) провела эксперимент,
[60] по условиям которого испытуемые должны были перемещать курсор по экрану путем давления на датчик, закрепленный между большим и указательным пальцами. Курсор нужно было двигать от одной точки до другой как можно быстрее, не совершая при этом лишних движений. Для этого волонтеры должны были научиться правильно рассчитывать силу сжатия датчика. За этим занятием они проводили по 45 минут в день, и через пять дней им удалось значительно снизить количество ошибок.
Во второй группе участникам эксперимента было дано то же задание, но у них к голове была подсоединена батарея, посредством которой через двигательную кору посылались электрические импульсы. Успехи этой группы оказались более впечатляющими: они перемещали курсор быстрее и допускали меньше ошибок, чем волонтеры из контрольной группы. Более того, они не утратили этого навыка и спустя три месяца. В другом исследовании, где участниками были пациенты, перенесшие инсульт, выяснилось, что восстановлению двигательной активности после инсульта способствует ТМС (транскраниальная магнитная стимуляция) двигательной коры.
«Подобные манипуляции с определенной долей вероятности однажды могут войти в стандартный набор процедур в курсе нейрореабилитации инвалидов и — кто знает, — возможно, также в программу тренировок будущих спортсменов-олимпийцев либо пополнят список запрещенных средств, приравненных к допингу»,
[61] — считает профессор Йенс Бо Нильсен, проводивший аналогичное исследование в Копенгагенском университете.
В раннем возрасте мозг человека подобен губке, он впитывает огромное количество информации и изменяется в ответ на различные стимулы даже без непосредственного контроля со стороны сознания. Нейрофизиологи называют это критическим периодом, поскольку уровень пластичности мозга в это время бывает запредельным. В течение критического периода мозг особенно чувствителен к воздействию, карта его коры перекраивается очень легко.
Понятие критического периода объясняет, почему так просто выучить иностранный язык и говорить на нем без акцента именно в детском возрасте. Им же объясняется резкий скачок в развитии, который мы делаем в первые годы жизни, когда научаемся ходить, говорить и мыслить отвлеченными понятиями.
За внимание в нашем мозге отвечает базальное ядро — группа клеток, спрятанных глубоко в нейронной ткани. Когда человек проходит через критический период, эти клетки резко активизируются, благодаря чему механизмы научения работают практически без усилий от рождения до достижения возраста 10–11 лет. Всплеск и последующий спад активности базального ядра регулируются за счет высвобождения большого количества BDNF, белка, стимулирующего нейропластичность во время физической нагрузки.
Сворачивание активности базального ядра знаменует окончание критического периода. Теперь устойчивые изменения в мозге происходят только в качестве реакции на что-то очень важное либо при сознательной концентрации внимания. Отсюда понятно, почему маленькие дети усваивают грамматику и употребление слов языка без особых усилий, в то время как взрослому приходится часами просиживать за учебниками и зубрить таблицы склонений и спряжений.
Если мы поймем, как можно перезапустить критический период, это станет началом революции, причем не только в спорте, а вообще во всех областях, где имеет место приобретение навыков и профессионального опыта. И это действительно возможно.
Пионеры исследований, посвященных нейропластичности, Майкл Килгард и Майкл Мерцених, смогли научить детенышей лабораторных крыс, пока те находились в критическом периоде развития мозга, различать ноты путем многократного повторения соответствующих звуков. Вначале слуховая кора животных могла дифференцировать ноты только по высоте звука, но со временем у них развились специальные зоны, которые реагировали, например, на до-диез.
Затем ученые ввели микроэлектроды в базальное ядро уже взрослых особей и добились возвращения у крыс критического периода. При проигрывании звуков мозг животных легко перестраивал свою карту, совсем как у детенышей, чей критический период был в самом разгаре. Так Мерцениху и Килгарду удалось распечатать закрывшееся окно возможности ускоренного обучения.
[62]
До применения на людях подобной или других методик, например, когда BDNF будут вводить непосредственно в мозг,
[63] пройдут еще годы, если не десятилетия. Очевидно, нужно еще будет как-то решить этические вопросы. Но уже сегодня спорт как никогда активно использует самые передовые достижения научно-технического прогресса. Если где-то вдруг появляется возможность улучшить результат, будьте уверены, что кто-то прямо сейчас платит деньги за возможность использовать эту маленькую хитрость. Тренеры, представляющие самые разные виды спорта, уже делают выводы.
Итак, в части I книги мы говорили о том, как благодаря нейропластичности мозг спортсмена развивает способность к прогнозированию и быстрому принятию решений. Далее мы познакомимся с теми, кто использует достижения науки о мозге для расширения границ человеческих возможностей, и раскроем маленькие секреты, которые помогут обычному человеку добиться собственных спортивных успехов.
Домашнее задание
СТИМУЛИРУЕМ КОГНИТИВНЫЕ СПОСОБНОСТИ
Концентрированное научение
Если попытки освоить какой-либо навык, научиться хорошо играть в спортивную игру или выучить иностранный язык не приносят результата, возможно, следует пересмотреть график практики: не распылять усилия на одно занятие в неделю, а полностью посвятить себя тренировкам в течение некоторого продолжительного периода. В начале своей карьеры сноубордиста Билли Морган работал и занимался спортом по полгода. Так его мозг изменился намного быстрее, чем если бы он распределял время между работой и тренировками более равномерно.