Книга Бог не играет в кости. Моя теория относительности, страница 13. Автор книги Альберт Эйнштейн

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Бог не играет в кости. Моя теория относительности»

Cтраница 13

Еще со времен Возрождения физика пыталась найти общие законы, которые определяют поведение материальных тел во времени и в пространстве. Рассмотрение проблемы существования этих тел предоставлялось философии. Для физика же небесные тела так же, как и тела на Земле и их химические разновидности, просто существовали во времени и в пространстве как реальные объекты; его задача состояла лишь в том, чтобы путем гипотетических обобщений извлекать эти законы из данных опыта. Предполагалось, что законы верны во всех случаях без исключения. Закон считался неверным, если имелся хотя бы один случай, когда выведенные из этого закона следствия опровергались на опыте. Кроме того, законы реального внешнего мира считались полными в следующем смысле: если состояние объектов в некоторый момент времени полностью известно, то их состояние в любой момент времени полностью определяется законами природы. Именно это мы имеем в виду, когда говорим о «причинности». Приблизительно такими были границы физического мышления сто лет назад.

На самом деле эти основы были даже еще более узкими, чем мы указали. Считалось, что объекты внешнего мира состоят из неизменяемых материальных точек, взаимодействующих между собой. Силы, приложенные к этим точкам, известны, и под их действием материальные точки находятся в непрекращающемся движении, к которому в конечном счете можно было бы свести все наблюдаемые явления.

С философской точки зрения такая концепция мира тесно связана с наивным реализмом, поскольку приверженцы последнего считают, что объекты нашего мира даются нам непосредственно чувственным восприятием. Однако введение неизменяемых материальных точек означало шаг к более изощренному реализму, ибо с самого начала было ясно, что введение подобных атомистических элементов не основано на непосредственных наблюдениях.

* * *

С возникновением теории электромагнитного поля Фарадея-Максвелла стало неизбежным дальнейшее усовершенствование концепции реализма. Возникла необходимость приписывать электромагнитному полю, непрерывно распределенному в пространстве, ту же роль простейшей реальности, какую раньше приписывали весомой материи. Разумеется, концепция поля не вытекала непосредственно из чувственного восприятия. Появилась даже тенденция представлять физическую реальность исключительно в виде непрерывного поля и не вводить в теорию материальные точки в качестве независимых сущностей.

Резюмируя, можно охарактеризовать границы физического мышления, которых придерживались еще четверть века назад, следующим образом.

Существует физическая реальность, не зависящая от познания и восприятия. Ее можно полностью постичь с помощью теоретического построения, описывающего явления в пространстве и времени; однако обоснованием такого построения является только его эмпирическое подтверждение. Законы природы — это математические законы, выражающие связь между элементами теоретического построения, допускающими математическое описание. Из этих законов следует строгая причинность в упоминавшемся уже смысле.

Под давлением огромного экспериментального материала почти все физики в настоящее время пришли к убеждению, что подобная идейная основа, хотя она и охватывает достаточно обширный круг явлений, нуждается в замене. Современные физики считают неудовлетворительным не только требование строгой причинности, но и постулат о реальности, не зависящей от какого-либо измерения или наблюдения.

Позвольте мне пояснить, что я имею в виду, на примере света. Пусть на отражающую прозрачную пластинку падает монохроматический луч света. Падающий луч распадается на прошедший и отраженный лучи. Ясно, что весь процесс можно точно и полно описать с помощью электромагнитного поля. Эта теоретическая интерпретация позволяет не только найти направление, интенсивность и поляризацию обоих лучей; но и с удивительной точностью описывает интерференционные явления, возникающие при наложении обоих лучей с помощью какого-нибудь устройства. Однако было показано, что свет имеет атомистическую энергетическую структуру, или, как принято говорить, состоит из «фотонов». Если в теле, на которое падает один из наших лучей, происходит элементарный акт поглощения, то количество поглощенной энергии при этом не зависит от интенсивности света. Отсюда мы вынуждены сделать вывод о том, что это явление определяется одним, а не несколькими фотонами: и способность двух пучков интерферировать между собой, и поглощение света определяется одним фотоном.

Ясно, что максвелловская теория поля не может учесть этот комплекс свойств фотона. Не дает она нам никаких средств и для того, чтобы понять атомистический характер поглощения энергии излучения. Но если попытаться представить себе фотон в виде точечной структуры, движущейся в пространстве, то такой фотон должен либо пройти сквозь пластинку, либо отразиться от нее, поскольку энергия его неделима. Эта интерпретация наталкивается на две трудности. Предположим, что фотон, прежде чем достичь пластинки, представляет собой простой физический объект, характеризуемый направлением, цветом и поляризацией. От чего будет зависеть в каждом отдельном случае, пройдет ли фотон через пластинку или же отразится от нее? Вряд ли можно найти достаточное основание для выбора одной из двух возможностей, и нелегко поверить, что такое основание вообще существует. Кроме того, представление о фотоне как о точечной структуре не позволяет объяснить интерференционные явления, возникающие только при взаимодействии обоих пучков.

* * *

Из столь затруднительного положения физики нашли следующий выход. Они сохранили волновое описание света, но волновое поле теперь уже означает не реальное поле, энергия которого распределена в пространстве, а всего лишь математическое построение, имеющее следующий физический смысл: интенсивность волнового поля в некоторой заданной области является мерой вероятности локализации фотона в ней. Только эту вероятность и можно измерить экспериментально, т. е. по поглощению света.

Оказалось, что, заменив поле в смысле первоначальной теории поля на поле распределения вероятности, мы получим метод, который выходит за рамки теории света и, при соответствующем изменении, приводит к наиболее полезной теории весомой материи. За необычайный успех этой теории пришлось платить двойной ценой: отказаться от требования причинности (ее никак нельзя проверить в атомной области) и оставить попытки описания реальных физических объектов в пространстве и времени. Вместо этого используется косвенное описание, с помощью которого можно вычислить вероятность результатов любого доступного нам измерения.

Таковы некоторые фундаментальные физические идеи, развитые в течение последнего столетия. Попытаемся понять, какое воздействие оказало развитие этих идей на биологов или, точнее, на их философскую позицию в отношении цели их исследований. Разумеется, физику здесь следует понимать в самом широком смысле; иначе говоря, она включает в себя все науки, занимающиеся изучением неорганической природы.

Напомним в этой связи плодотворное влияние понятий ньютоновской небесной механики на развитие физики. Ньютон показал, каким образом при надлежащем использовании понятий массы, ускорения и силы (последняя считается зависящей от расположения масс) можно понять движение планет. Эти понятия казались настолько естественными и даже необходимыми, что все с полной уверенностью видели в них ключ к пониманию всех процессов неорганической природы. Затем на основе этих понятий была построена механика сплошных сред, в рамках которой понятие силы было обобщено за счет включения в него напряжений.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация