Книга Все лгут. Поисковики, Big Data и Интернет знают о вас всё, страница 54. Автор книги Сет Стивенс-Давидовиц

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Все лгут. Поисковики, Big Data и Интернет знают о вас всё»

Cтраница 54

Но как нам точнее установить причинно-следственную связь? Золотой стандарт – это рандомизированное контролируемое испытание. Вот как это работает. Людей наугад делят на две случайные группы. Одну, рабочую, просят сделать или взять что-то. Другую, контрольную, не просят. После чего наблюдают за реакцией каждой группы. Разница в результатах и является причинно-следственной связью.

Например, чтобы проверить, приводит ли умеренное употребление алкоголя к хорошему здоровью, можно случайным образом выбрать несколько человек. Некоторые из них будут пить один бокал вина в день в течение года, а другие не будут. А затем сравнить их состояние здоровья. Поскольку люди были разбиты на две группы случайным образом, нет никаких оснований ожидать, что в одной из них участники будут более здоровы или более социализированы. Вы можете поверить, что эффект вина совершенно обычен. Рандомизированные контролируемые испытания являются самым надежным доказательством в любой сфере деятельности. Если таблетка успешно прошла такой тест, ее можно начинать продавать. Если она не может пройти его, ее не будет на аптечных полках.

Подобные эксперименты начинают все чаще использоваться в социальных науках. Эстер Дюфло, французский экономист из Массачусетского технологического института, возглавила кампанию за более широкое распространение таких исследований в экономике развития – области знаний, пытающейся найти наилучшие способы помочь беднейшим людям в мире. Рассмотрим эксперимент Дюфло и ее коллег, посвященный улучшению образования в сельских районах Индии, где более половины учащихся средних школ не могут прочитать простое предложение. Одной из потенциальных причин проблем является нехватка учителей. На данный момент в некоторых школах в сельских районах Индии не хватает более 40 % преподавателей.

В чем суть теста Дюфло? Они с коллегами случайным образом разделили школы на две группы. В одной (рабочая группа) в дополнение к базовой заработной плате учителям каждый день платили небольшую сумму – 50 рупий, или около 1,15 долларов. В других преподаватели работали без дополнительной оплаты. Результаты были показательны. Когда учителям доплачивали, они в полтора раза реже пропускали работу {136}. Успеваемость школьников тоже существенно улучшилась – особенно это касалось молодых девушек. К концу эксперимента в школах, где учителям платили за приход на занятия, стало на 7 % больше девочек, умеющих читать и писать.

Согласно статье в «New Yorker», когда Билл Гейтс узнал {137} о работе Дюфло, он был настолько впечатлен, что сказал ей: «Мы должны финансировать вас».

Азбука А/B-тестирования

Итак, рандомизированные испытания являются золотым стандартом для доказательства причинно-следственных связей, и их использование распространилось на социальные науки. Теперь вернемся в офис Google в день 27 февраля 2000 года. Благодаря чему тогда произошла революция в интернете?

В тот день несколько инженеров решили провести эксперимент на сайте Google. Они случайным образом разделили пользователей на две группы. В рабочей была показана новая страница результатов поиска с 20 ссылками, а в контрольной – старая, с 10. Затем специалисты сравнили удовлетворенность представителей обеих групп, основываясь на том, как часто они возвращались в Google.

Революция? Поначалу это не казалось столь уж революционным. Я уже отметил, что подобные эксперименты использовались фармацевтическими компаниями и социологами. Так можно ли считать простой их перенос в другую область таким уж большим делом?

Ключевой момент – и это быстро поняли инженеры Google – заключался в том, что эксперименты в виртуальном мире имеют огромное преимущество перед исследованиями в реальном мире. Они так же убедительны, но менее ресурсоемки. По ходу дела Дюфло нужно было общаться со школами, организовать финансирование, платить части учителей и проверять уровень всех учащихся. Реальные эксперименты могут стоить тысячи или сотни тысяч долларов, и на их проведение могут уйти месяцы или годы.

В цифровом мире подобные исследования можно проводить дешево и быстро. Вам не нужно нанимать участников и платить им. Вместо этого можно просто написать строку кода и случайным образом составить группы. Для исследования вам не нужны пользователи – можно измерять перемещения мыши и клики. Нет необходимости вручную писать код и анализировать ответы – можно написать программу, которая будет автоматически делать это за вас. Вам не придется ни с кем связываться. Вам даже не придется объяснять людям, что они являются частью эксперимента.

Это четвертое преимущество больших данных: они позволяют проводить рандомизированные испытания, помогающие гораздо легче находить реальные причинно-следственные связи в любое время и практически в любом месте – важно только наличие доступа в интернет. В эпоху больших данных весь мир – большая лаборатория.

Понимание этого быстро распространилось в Google, а затем по всей Силиконовой долине, где рандомизированные испытания были переименованы в «А/B-тесты». В 2011 году инженеры Google провели семь тысяч А/B-тестов {138}, и с тех пор их число только растет.

Если Google хочет знать, как заставить людей кликать на рекламу на его сайтах, компания может использовать в баннерах два оттенка синего: один для группы А, другой для группы Б, а затем сравнить количество кликов. Конечно, простота такого тестирования может привести к злоупотреблениям. Некоторые сотрудники считали, что, поскольку тестирование настолько легкое, Google утонет в экспериментах. В 2009 году один несостоявшийся дизайнер уволился после того, как в ходе очередного А/B-тестирования был использован 41 незначительно отличающийся оттенок синего {139}. Но протест этого дизайнера против навязчивого исследования конъюнктуры рынка и в поддержку искусства практически не остановил распространение данной методологии.

Сегодня Facebook выполняет {140} тысячи А/В-тестов в день – это означает, что небольшое число инженеров за это время запускают больше рандомизированных контролируемых испытаний, чем вся фармацевтическая отрасль за год.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация