Книга Онтогенез. От клетки до человека, страница 3. Автор книги Джейми Дейвис

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Онтогенез. От клетки до человека»

Cтраница 3

Бейкер использовал для строительства железнодорожного моста радикально новый по тем временам материал – сталь. Этот материал может держаться как за счет растяжения, так и за счет сжимающего напряжения, поэтому строительство можно было начинать с любой опоры, прикрепляя к ней секции одним концом. Чтобы поместить длинные и относительно легкие стальные секции на нужное место, использовались подъемные краны. Между собой эти секции соединялись с помощью заклепок.

Вантовый мост, самый новый из трех, держится за счет стальных тросов, вант, которые закреплены на пилонах на разных берегах. В данном случае сначала были установлены пилоны, затем намечены опорные точки для крепления тросов, а затем постепенно натягивались держащие мост ванты.

В каждом из этих случаев стратегия строительства моста определялась характером материалов. Ни один из них нельзя было бы построить, используя стратегию, предназначенную для моста другого типа. Так же и в биологии: стратегия конструирования зависит от природы участвующих в нем компонентов. Таким образом, настало время представить вам три ключевых биологических компонента, которые будут много раз упомянуты в этой книге, – это белки, матричная РНК (мРНК) и ДНК.

Белки – основные строительные материалы в биологии. Из них создана большая часть физических структур, которые придают форму клеткам, они образуют каналы и насосы, регулирующие циркуляцию веществ в клетках. Кроме того, белки – катализаторы. Они запускают и контролируют биохимические реакции и метаболические пути, продуктами которых являются другие составляющие организма, например ДНК, жиры и углеводы. Относительную важность белков можно проиллюстрировать, например, таким фактом: эритроциты (красные кровяные тельца) в процессе созревания теряют ядра, в которых содержатся все их гены, но после этого живут еще около ста двадцати дней. Клетка, в которой сохранились гены, но нарушилась функция белков, погибнет в течение нескольких секунд.

Белок состоит из длинной цепи отдельных блоков – аминокислот. Известно около двадцати типов аминокислот, отличающихся по строению и химическим свойствам. Они взаимодействуют друг с другом, и это означает, что цепочки аминокислот могут закручиваться в замысловатые формы – самопроизвольно или под действием других белков. Этот процесс закручивания настолько сложен, что невозможно, зная одну лишь последовательность аминокислот, предсказать, какой именно белок получится в результате. (Компьютерные программы для прогнозирования формы белка существуют, но в них используется сочетание расчетов и вероятностных рассуждений, основанных на уже известной структуре белков и аминокислотных последовательностей, выявленных экспериментально с помощью рентгеновской кристаллографии. Таким образом, эти программы похожи на компьютерные программы, которые используют синоптики; впрочем, надо отметить, что предсказание структуры белков все же точнее прогноза погоды.)

Разные белки состоят из разных последовательностей аминокислот. Они одна за другой присоединяются к растущей цепи белка в порядке, который устанавливается молекулой, называемой матричной РНК (сокращенно мРНК) (рис. 1). Молекула мРНК тоже представляет собой одинарную цепочку отдельных блоков – азотистых оснований: аденина (A), цитозина (C), гуанина (G) и урацила (U). По своей структуре они сходны и по сравнению с аминокислотами не так интересны в плане химических свойств: молекулы мРНК не играют большой роли в клетке помимо регуляции последовательности аминокислот в формирующемся белке. Эта последовательность определяется последовательностью оснований в мРНК. Каждой аминокислоте соответствует свой код из трех азотистых оснований.


Онтогенез. От клетки до человека

Рис. 1. Трансляция белка на рибосоме. Аминокислоты связываются в растущую белковую цепь согласно последовательности оснований мРНК


Последовательность оснований в молекулах мРНК определяется последовательностью оснований в ДНК. ДНК – очень длинная молекула, состоящая из комбинаций четырех азотистых оснований: аденина, цитозина, гуанина и тимина (T), которые могут располагаться в разной последовательности. Отдельные молекулы ДНК, образующие большую часть сорока шести хромосом в каждой клетке нашего тела, содержат миллионы азотистых оснований. Отдельные участки этой цепи представляют собой гены. Когда считывается генетическая информация, молекула РНК кодирует последовательность оснований ДНК (A, C, G, T) на языке своих оснований (A, C, G, U). Таким образом, РНК по сути дела является копией (транскриптом) гена в другой среде. Фактическое считывание генов производится целыми комплексами белков. Сначала они связываются с различными короткими последовательностями оснований в начале гена, АТААТ или TCACGCTGA. Разные гены имеют разные комбинации таких коротких последовательностей, маркирующих их начало, а каждая последовательность связывается с конкретным белком. Таким образом, разные сочетания белков участвуют в активации процесса считывания различных генов.

То, что разные гены активируются разными ДНК-связывающими белками, очень важно, потому что разные клетки организма должны синтезировать разные типы белков. Например, клетки кишечника производят белки, которые позволяют переваривать пищу, клетки яичников синтезируют белки для половых гормонов, а лейкоциты вырабатывают белки для борьбы с микробами. Все эти клетки содержат все гены генома, даже те, которые им никогда не понадобятся. Однако считываются только гены, необходимые конкретным клеткам, и происходит это за счет присутствия «эксклюзивных» ДНК-связывающих белков.

Теперь нам волей-неволей придется отказаться от мысли, что какой бы то ни было из этих компонентов может отвечать за развитие клетки – или эмбриона – в целом. Повторю: белки образуются только потому, что их образование диктуют (посредством мРНК) активные гены. В свою очередь, эти гены активны только потому, что их активировали уже существующие белки. Таким образом, получается замкнутый круг: контроль не сосредоточен ни в одной конкретной точке, потому что он осуществляется повсюду (рис. 2).


Онтогенез. От клетки до человека

Рис. 2. Циклическая природа биологической логики. Белки определяют гены, которые нужно считывать, а эти гены управляют образованием новых белков. Некоторые из новых белков определяют гены, которые нужно считывать… И так далее


Цикл, схема которого изображена на рис. 2, наводит на одну интересную мысль. Для того чтобы клетка сохраняла стабильность, среди активных генов должны быть такие гены, которые определяли бы, какие белки будут связываться с последовательностями, маркирующими эти самые гены. При этом, однако, набор активных генов не должен включать какие бы то ни было белки, активирующие неактивные в настоящий момент гены. Если не будут выполнены эти условия, белки, созданные набором активных генов, не смогут поддерживать активность того же самого набора генов – некоторые из них «выключатся», другие «включатся», а в результате будет сделан совсем другой набор белков, и так далее. Эти изменения продолжатся до тех пор, пока не будет достигнуто стабильное состояние. Именно эта закономерность лежит в основе того, как клетки нашего организма преобразуются в процессе развития в клетки новых типов. Такое изменение, как правило, происходит под воздействием внешних сигналов, которые меняют способность конкретных белков активировать гены: они нарушают стабильность и вызывают переход к новому состоянию. Мы будет постоянно сталкиваться с примерами таких сигналов в последующих главах книги.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация