Книга Неандерталец. В поисках исчезнувших геномов, страница 31. Автор книги Сванте Пэабо

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Неандерталец. В поисках исчезнувших геномов»

Cтраница 31

Вдохновленный результатом, Алекс придумал праймеры для амплификации двух коротких участков фрагмента особого гена, который носит название “ген фактора Виллебранда”; в геноме слона содержится только по одному такому гену. Фактор Виллебранда – его ген записывают как vWF – это белок крови, который помогает тромбоцитам прикрепляться к поврежденным кровеносным сосудам. Мы выбрали именно этот ген, так как его нуклеотидная последовательность как у слонов, так и у многих других млекопитающих уже была известна, и нам оставалось только выделить его из тканей мамонта и сравнить с уже имеющимися, современными. Я глазам не поверил, когда на очередном еженедельном лабораторном обсуждении Алекс показал картинки с полосками в геле, и это было не что иное, как амплифицированные фрагменты гена мамонта. Он повторил эксперимент дважды, каждый раз с заново приготовленными экстрактами из мамонтовой кости. Среди множества клонов, которые он секвенировал, были хорошо видны ошибки в отдельных молекулах ДНК, появляющиеся или из-за химического разрушения древних ДНК, или из-за пристраивания неправильного нуклеотида к цепочке ДНК при ПЦР (рис. 9.1). Но для одной из позиций Алекс заметил интересную закономерность. Он секвенировал в общей сложности тридцать клонов, проведя для каждого три независимые серии ПЦР. В одной из позиций у пятнадцати клонов стояло Ц, у четырнадцати – Т и у одного А. Единственный случай с аденином (А) мы посчитали ошибкой ДНК-полимеризации, но остальная картинка – у меня сердце замерло… Это конкретное место в цепочке являлось тем, что генетики называют гетерозиготной позицией, или, иначе, точечным нуклеотидным полиморфизмом (сокращенно – SNP, СНИП). В этом месте две копии данного гена, полученные от мамы-мамонтихи и папы-мамонта, различались. И нам удалось увидеть самую первую гетерозиготную позицию, СНИП, ледникового периода. То есть мы имели дело с генетикой в чистом виде, с генетикой в действии, если хотите, – вот вам ядерный ген, у которого в популяции встречается два варианта. Дело пошло на лад. Если нам удалось прочитать оба варианта этого гена, тогда, в принципе, остальные части генома тоже могут быть доступны. И таким образом, откроется возможность, по крайней мере теоретически, получать генетическую информацию о видах, вымерших много тысяч лет назад.

Неандерталец. В поисках исчезнувших геномов

Рис. 9.1. Клонированные ДНК последовательности по трем амплификациям фрагмента ядерного гена мамонта возрастом 14 тысяч лет. Стрелка показывает на гетерозиготную позицию, или СНИП, впервые обнаруженную для ДНК из позднего плейстоцена. Из A.D. Greenwood et al. Nuclear DNA sequences from late Pleistocene megafauna. Molecular Biology and Evolution 16, 1466- 1473 (1999)


Чтобы закрепить успех, Алекс отсеквенировал еще два фрагмента генов, имеющих по одной копии в ядре. Один из них кодировал белок, регулирующий выделение нейромедиаторов в мозге, а другой – белок, связывающий витамин А; этот последний вырабатывался палочками и колбочками в глазу. И в обоих случаях у Алекса все превосходно получилось.

Мы так долго бились с ядерной ДНК, что Алексовы результаты с мамонтом были встречены с величайшей радостью, и у меня несколько дней царил прямо праздник на душе. Но… не мамонты интересовали меня, совсем не мамонты. Неандертальцы – вот моя цель, а я точно знал, что в вечной мерзлоте неандертальцев не бывает. Я убедил Алекса вернуться к пещерным медведям и попробовать еще раз материал из Виндии: проверить, не сможем ли мы все же получить ядерную ДНК из остатков, не подвергшихся заморозке. Он проанализировал мтДНК нескольких пещерных медведей и выбрал кость, в которой, по всей видимости, ДНК содержалось больше всего. Мы сделали ее углеродный анализ – оказалось, 33 тысяч лет, что приблизительно соответствовало возрасту неандертальцев. Алекс стал работать именно с этой костью. Он попробовал выделить гены рибосомальной РНК – а в геноме множество их копий. И действительно, после амплификации Алексу удалось получить небольшое их количество. Далее он реконструировал последовательность из амплифицированных клонов. И выяснил, что у пещерных медведей она идентична соответствующим нуклеотидным последовательностям современных медведей.

Безусловно, это был успех, но с “ложкой дегтя”. Мы затратили столько усилий на ген с множеством копий в геноме; а что, если речь пойдет о гене, у которого есть только одна копия, например о vWF, с которым Алекс работал на мамонтовом материале? Тогда эксперименты заведомо обречены на провал. Алекс тем не менее попробовал и, как и ожидалось, потерпел неудачу. В глубине души – я никому об этом не рассказывал – я глубоко огорчился результатами экспериментов. Мы показали, что ядерная ДНК способна выдержать более десятка тысяч лет в вечной мерзлоте и что только следы даже самой распространенной ядерной нуклеотидной последовательности обнаруживаются в костях пещерных медведей. Разница между замораживанием и хранением в известняковой пещере была огромной.

В 1999 году мы опубликовали все открытия Алекса в прекрасной, на мой взгляд, работе[42], которую незаслуженно обошли вниманием. Там доказывалось, что ядерная ДНК сохраняется в остатках из вечной мерзлоты и что в ней даже можно выявить гетерозиготную позицию, такую, где две хромосомные копии несут разные варианты нуклеотидных последовательностей. Мы с уверенностью говорили о перспективах генетических исследований остатков из вечной мерзлоты и в конце работы написали: “В отложениях вечной мерзлоты и в других холодных средах находится множество животных остатков. В подобных остатках выявляются не только мтДНК, но и ядерные ДНК-последовательности, причем во многих случаях представленные в геноме единственной копией; это открывает перспективы использования ядерных локусов в филогенетических и популяционных генетических задачах, а также в исследованиях генов, определяющих фенотипические признаки”.

Со временем другие ученые продолжили эти исследования, однако произошло это нескоро, через пять или даже десять лет. Но что еще обиднее, на тот момент казалось, что если только неандертальца не раскопают в вечной мерзлоте, никогда нам не увидеть целого неандертальского генома.

Глава 10
Вот они, ядра

Тем временем дела в лаборатории под моим руководством продвигались вперед, медленно, но верно. И все-таки, стоило мне остаться одному, например отгородившись от мира ремнем самолетного кресла или слушая в затемненном зале не слишком интересную лекцию, как прежняя досада возвращалась: ядерную ДНК неандертальцев так и не удалось выделить. Но я знал, я чувствовал, что она там есть, должна быть, и пусть ПЦР хоть сто раз отрицает это. Просто нужно как-то исхитриться достать эту ядерную ДНК.

Очередную попытку в этом направлении предпринял Хендрик Пойнар. Исчерпав терпение в бесплодных попытках отыскать ДНК флоры и фауны, заключенной миллионы лет назад в янтарь, он решил приложить силы к задаче более перспективной. Нам с ним в некотором смысле повезло: я попал на скучную конференцию и от нечего делать обдумывал наши разработки касательно выделения ДНК из помета животных. Например, мы изучали вымершего гигантского наземного ленивца из ледникового периода. Гигантские ленивцы оставили большое количество помета, который археологи окрестили милым научным термином “копролиты”. Даже больше – например, пол в некоторых пещерах в Неваде почти целиком состоит из окаменевших экскрементов гигантского ленивца. В статье 1998 года в ScienceХендрик уже обозначил присутствие и сохранность в подобном материале мтДНК. Мы описали процесс реконструирования растительной ДНК из одного такого комка и показали, как с помощью копролитов можно воссоздать меню ленивца, пообедавшего незадолго до своей гибели 20 тысяч лет назад[43]. Такой прекрасный результат позволял предположить, что окаменевший помет содержит большое количество ДНК, в том числе и ядерной. Я предложил Хендрику попробовать это выяснить.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация