Книга Вечный sapiens. Главные тайны тела и бессмертия, страница 167. Автор книги Александр Никонов

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Вечный sapiens. Главные тайны тела и бессмертия»

Cтраница 167

Так вот, выяснилось, что электрон, который раньше считали шариком (частицей), может одновременно пройти сквозь две расположенные рядом дырки, образовав за шторкой интерференционную картину. А электромагнитная волна – например, световая – порой ведет себя, как поток отдельных частиц – фотонов. Удивительно. И непредставимо, поскольку в макромире нет схожих объектов для сравнения.

Ну, а когда Гейзенберг открыл принцип неопределенности, ситуация стала еще более туманной. Оказалось, что мы не можем одновременно точно узнать координаты и скорость частицы. Либо то, либо это. И чем точнее мы узнаем один параметр, тем неопределеннее становится другой. Неопределенность оказалась вшитой в структуру мира. Реальность в ее привычном физическом смысле поплыла…

Что же физики понимают под реальностью? То, что существует объективно, то есть независимо от нас. А в микромире знание о частице неожиданно оказалось включенным в формулы, поскольку получение знаний влияло на нее! В микромире не оказалось траекторий. И точных энергий. И скоростей. Формулы для предсказаний событий были, но они, в отличие от привычной механики или баллистики, не могли указать точно, куда шмякнется запущенная частица, а давали лишь вероятность ее попадания в то или иное место. У пули траектория есть, пуля летит с определенной скоростью, которую можно вычислить в любой точке траектории. Можно предсказать, куда пуля попадает, если мы знаем ее массу, скорость, силу притяжения планеты и направление выстрела. Ну, будут, конечно, какие-то неточности в измерениях, но в теории все выглядит абсолютно четко, а неточности непринципиальны и ни на что практически не влияют в силу их ничтожности. А вот в микромире, то есть в мире «микропуль», эти неточности уже вылезают на первое место, становясь «больше пули». И мы можем сказать, просчитав все по формулам, только вероятность того, что здесь или там окажется частица. От чего зависит, куда именно она вонзится? Ни от чего! Это принципиально непредсказуемо. Случайность имманентна нашему миру. Формула предсказывает только «размазанную» вероятность попадания.

Физикам это не нравилось. Они за столетия привыкли к тому, что мир фатален – по крайней мере в теории. И что у всего есть причины и следствия. Если частица воткнулась в левую сторону фотопластинки, значит, у этого есть одни причины, а если в правую – то другие. Видимо, разница в попадании возникла в силу каких-то нюансов, о которых мы просто не знаем. Какое-то время именно так и предпочитали думать: формулы позволяют получить вероятностные предсказания только в силу нашего незнания об истинных причинах поведения частицы. Вот узнаем и будем предсказывать. Многие до сих пор надеются, что есть некая скрытая пока от нас физическая реальность, которую нужно постичь. Ну, не может так быть, чтобы у частицы не было траектории, и, как то утверждает копенгагенская школа Нильса Бора, электрон движется сразу по всем возможным траекториям. Такое ведь даже представить себе невозможно! Как один автомобиль может двигаться из Москвы в Питер сразу по всем дорогам, включая дорогу через Сочи?

Эйнштейн и Бор об этом спорили часами, прогуливаясь по улицам. Но в конце концов победила точка зрения «копенгагенцев». Которая заключается в следующем…

Что описывают уравнения? Уравнения описывают вероятность нахождения электрона или фотона в данном месте, если мы вдруг захотим его поискать в этом месте. А если не захотим? Где тогда был электрон? И был ли он вообще в каком-то конкретном месте? Эйнштейн полагал, что был. Электрон спокойно летел себе по обычной физической траектории, просто мы не все еще знаем о мире, наши формулы не точны и могут пока предсказать только вероятность его пролета по той или иной траектории. Но на самом деле электрон от наших знаний о нем не зависит и летит себе спокойно там, где летит. Бор же говорил, что пока мы не вздумали поинтересоваться его местоположением, электрон нигде конкретно и не находился, а был размазан в пространстве. Но как только мы решили узнать, где он, вот в этот самый момент электрон и возникает в конкретном месте – например, засвечивая определенную точку на фотопластинке. И мы принципиально не можем предсказать, где именно эта точка окажется. Этого никто не знает, в том числе и сам электрон. Потому что это знание не существует до тех пор, оно получено в результате опыта, то есть воздействия.

Чуете глубину?

Мы сами производим знание!.. С помощью измерения. Суть в том, что мы не измеряем нечто такое, что уже существует без нас, как это происходит в классической физике – взяли железный цилиндрик и измерили микрометром. В квантовом мире мы создаем оцениваемое! Которого раньше не было. Создаем актом измерения. Иными словами, мы сами локализуем электрон, стягивая его из облачка в точку. Где находился электрон во время полета, мы не знаем, потому что он находился сразу везде (это доказывается хотя бы тем, что один электрон проскакивает одновременно в две дырки, разнесенные на расстояние большее, чем диаметр «сколлапсировавшего» электрона) [5]. Электрон в полете размазан, но мы может заставить его «материализоваться» в виде частицы с помощью определенного воздействия, которое называем измерением. В момент измерения электрон мгновенно собирается из огромной области пространства, «концентрируясь» в точку и становясь тем, что физики привыкли называть реальным объектом, описанным во всех физических справочниках – с размерами, массой и пр.

Уравнение, которое описывает жизнь частиц, называется волновой функцией. А процесс «материализации» частицы называют редукцией волновой функции. И вот эта проблема редукции, она же проблема измерения – одна из самых болезненных мозолей современной физики. Сознание, которое раньше только оценивало реальность, от него независимую, теперь вошло в физику на правах непосредственного создателя реальности.

Можно спросить: а при чем тут сознание? Измерение – это же физический процесс, а не умственный! В процессе измерения мы, например, облучаем частицу фотонами или ставим на ее пути экран, в результате чего частица локализуется, «кучкуется», собираясь из «распыленного» в пространстве «облачка» в точку. Ну, и при чем тут сознание? Мы можем провести эксперимент, а результаты его вообще не узнавать, то есть не интересоваться, в какое именно место экрана шлепнулась частица, поскольку и так знаем, что она где-то оставила на черной фотопластинке белую точку. То есть редукция волновой функции произошла все равно. Более того, мириады редукций волновых функций происходят в природе вообще без всякого наблюдателя. Природа сама проводит ежесекундно триллионы «измерений» – летящие кванты шлепаются о разные препятствия в течение миллиардов лет. Где тут сознание?

Не спешите. Дело в том, что если мы не знаем, то есть не осознали, в какое именно место экрана шлепнулся фотон, мы обязаны описывать ситуацию всем комплексом состояний. Для нас редукция не произошла. Ибо редукция – появление определенности взамен неопределенности. А определенность уже прерогатива сознания. Это требует некоторого пояснения…

Вход
Поиск по сайту
Ищем:
Календарь
Навигация