Рис. 24.4. Взлет Аполлона-11. Снимок предоставлен Дж. Ричардом Готтом
Наш разум наделяет нас большим потенциалом, возможностью колонизировать Галактику и превратиться в сверхцивилизацию, но для большинства разумных видов это, должно быть, недостижимо – либо окажется, что мы особенные, поскольку мы разумны, но до сих пор живем всего на одной планете. Источники энергии, имеющиеся в нашем распоряжении, значительно уступают по мощности нашему Солнцу. Мы не очень могучи и существуем недавно. Но мы разумны, уже многое узнали о Вселенной и о законах, которым она подчиняется – как давно она возникла, когда во Вселенной возникли галактики и звезды. Это ошеломительное достижение, историю которого мы вам здесь и рассказали.
Благодарности
Эта книга, а также лекционный курс, который лег в ее основу, появились в результате труда множества людей. Для начала поблагодарим наших коллег из Принстонского университета, от которых мы так много узнали за долгие годы и которые смогли создать такую плодотворную и доброжелательную атмосферу, в которой нам довелось работать. Особенно благодарим профессора Нету Бакал, сформулировавшую исходную идею, на основе которой и сложилось наше трио.
Благодарим наших студентов, в том числе Каллена Блейка (Cullen Blake), Уэса Колли (Wes Colley), Джули Комерфорд (Julie Comerford), Дэниэла Грина (Daniel Grin), Юнь-Шань Ло (Yeong-Shang Loh), Джастина Шефера (Justin Schafer), Джошуа Шрёдера (Joshua Schroeder), Зака Слепяна (Zack Slepian), Искру Стратеву (Iskra Strateva) и Майкла Фогели (Michael Vogeley). Благодарим Рамина Ашрафа (Ramin Ashraf), Сората Тунгкасири (Sorat Tungkasiri), Паулу Бретт (Paula Brett), Софию Кирхакос Стросс (супругу Майкла) и Кэти Грически (Kathy Gryzeski) за помощь в работе, а также Люси Поллард-Готт (супругу Рича), которая вычитала и отредактировала всю книгу. Благодарим Роберта Дж. Вандербея за то, что поделился некоторыми своими астрофотографиями, а также Ли-Синь Ли за помощь с иллюстрациями. Также благодарим Адама Берроуза (Adam Burrows), Криса Чибу (Chris Chyba), Матиаса Залдарриагу (Matias Zaldarriaga), Роберта Дж. Вандербея и Дона Пейджа (Don Page) за ценные замечания.
В Принстонском университете благодарим нашего выпускающего редактора Марка Беллиса (Mark Bellis), нашего корректора Сида Вестморленда (Cyd Westmoreland), а также нашего редактора Ингрид Гнерлих (Ingrid Gnerlich) за ее беспримерную веру и прозорливость.
Майкл Стросс
Нил Деграсс Тайсон
Дж. Ричард Готт
Приложение 1
Вывод формулы E = mc2
Допустим, вы находитесь в лаборатории, где частица медленно движется слева направо со скоростью v гораздо ниже с (то есть v << c). Частица подчиняется законам Ньютона, и если она имеет массу m, то, согласно Ньютону, у нее будет импульс P = mv, направленный вправо. Частица испускает в противоположных направлениях два фотона (один влево, другой вправо), каждый из которых обладает энергией E = hν0.Частица теряет энергию в количестве ΔE = 2hν0, равную той энергии, которую «с точки зрения частицы» уносят два фотона. Эйнштейн показал, что импульс фотона равен его энергии, деленной на скорость света c. С точки зрения частицы фотоны уносят равное количество импульса, но в противоположных направлениях. Поэтому общий импульс двух фотонов «с точки зрения частицы» равен нулю. Частица «считает», что находится в покое (по первому постулату Эйнштейна), и испускает два одинаковых фотона в противоположных направлениях. По соображениям симметрии, если находящаяся в покое частица испускает два равночастотных фотона в противоположных направлениях, то она и остается в покое. Мировая линия частицы остается прямой – скорость ее не меняется (см. рис. 18.4).
Фотон, летящий вправо, в итоге врежется в правую стену лаборатории. Он ударит в стену, и стена немного отскочит вправо. Так действует давление излучения: стена поглощает импульс фотона и под влиянием этого импульса начинает немного сдвигаться вправо. Наблюдатель, сидящий на правой стене, увидит, что в правую стену врезался прилетевший слева фотон и частота этого фотона выше, чем была в момент излучения (сдвинута в синюю часть спектра), поскольку частица движется в сторону правой стены. Это проявление эффекта Доплера. Для сравнения: наблюдатель, сидящий на левой стене, увидит, что летящий влево фотон смещен в красную часть спектра и частота его ниже, чем в момент излучения, поскольку частица удаляется от этого наблюдателя. Более высокочастотный (синий) фотон обладает большим импульсом, чем более низкочастотный (красный). Поэтому толчок в правую стену (с отскоком вправо) будет сильнее, чем толчок в левую стену (с отскоком влево). Два толчка не уравновешиваются, и в целом лаборатория получает импульс вправо. Давайте вычислим, каков этот суммарный толчок.
Время между прохождением гребней волны излученных фотонов (воспринимаемых как волны света), измеренное частицей, равно Δt0. Время между испусканием двух гребней волны, Δt0, равно единице, деленной на частоту света 0 с точки зрения частицы. Допустим, частота света – 100 циклов в секунду; например, время между прохождениями соседних гребней волны составляет 1/100 секунды. Тогда Δt0 = 1/v0. Пусть v – скорость частицы относительно лаборатории. Часы на частице будут тикать (в системе координат покоя в лаборатории) с частотой √1 – (v2/c2) по сравнению с часами в лаборатории, об этом мы уже говорили. Но при этих расчетах предполагается, что v << c, поэтому мы игнорируем все члены порядка (v2/c2), уделяя внимание лишь членам порядка (v/c). (Например, если v/c = 10–4, что соответствует 30 км/c, скорости вращения Земли вокруг Солнца, то v2/c2 = 10–8; этот второй член настолько мал, что им можно пренебречь по сравнению с первым.) Поскольку мы работаем в пределе v << c, частота тиканья часов на частице, в принципе, не отличается от частоты тиканья лабораторных часов. Таким образом, интервал времени между ударами часов на частице (Δt0) и в лаборатории (Δt´), в принципе, одинаковы, поскольку частица движется так медленно.
Наблюдатель, находящийся в состоянии покоя относительно лаборатории, видит, что между прохождениями первого и второго гребней волны, испущенной частицей, проходит время Δt0 = Δt´ = 1/ 0. (См. рис. 18.4, где интервал времени показан в виде вертикальной прерывистой линии.) В момент, когда частица испустит вправо следующий гребень волны, он отстанет от первого гребня на расстояние d = (с – v)Δt´.Оно равно расстоянию, преодолеваемому лучом света за время Δt´ (то есть сΔt´) минус расстояние, пройденное частицей (равное vΔt´). Оба гребня летят вправо со скоростью света с (согласно второму постулату Эйнштейна); следовательно, они летят параллельно, и расстояние между ними остается постоянным d = (с – v) Δt´.Длина световой волны λП, регистрируемая наблюдателем, сидящим на правой стене лаборатории, равна этому расстоянию между гребнями волны, то есть λП = (с – v) Δt´.Пространственно-временная схема на рис. 18.4 иллюстрирует этот мысленный эксперимент. Расстояние λП между гребнями волны измеряется в некоторый момент лабораторного времени (по горизонтали на данной пространственно-временной схеме).