Книга Большое космическое путешествие, страница 130. Автор книги Нил Деграсс Тайсон, Майкл Стросс, Дж. Ричард Готт

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Большое космическое путешествие»

Cтраница 130

Следовательно, временной интервал между прибытием двух гребней волны к правой стене равен ΔtП = λП/c = (с – v) Δt´/c, а наблюдаемая частота фотона, летящего вправо, составит νП = 1/ΔtП = c/[(с – v) Δt´] = ν0c/(с – v). Теперь при v << c величина c/(с – v) примерно равна 1 + (v/c), здесь в v/c остаются лишь члены первого порядка.(Например, если v/c = 0,00001, c/(с – v) = 1/0,99999 = 1,00001 с высокой точностью – можете проверить на калькуляторе.) Следовательно, наблюдатель, сидящий у правой стены лаборатории, видит, что летящий к нему фотон врезается в стену, имея частоту νП = ν0[1 + (v/c)].Он наблюдает более высокую частоту, чем была у фотона в момент излучения, и эта частота больше исходной в [1 + (v/c)] раз в силу доплеровского эффекта, где v – скорость частицы. Это стандартная формула доплеровского эффекта для света, смещенного в синюю часть спектра; этот свет попадает в правую стену лаборатории и был излучен частицей, которая на низкой скорости v летит к стене.

Попадая в правую стену, летевший вправо фотон сообщает ей направленный вправо импульс hνП/c = hν0[1 + (v/c)]/c.

Также частица излучает фотон, летящий влево. В итоге он врежется в левую стену. Наблюдатель, сидящий у левой стены лаборатории, видит, что этот фотон, летящий к нему, имеет частоту νЛ = ν0[1 – (v/c)].Знак скорости в формуле меняется на обратный, поскольку наблюдатель у левой стены видит, как частица удаляется от него со скоростью v.Частота волны с его точки зрения ниже, чем в момент излучения, это объясняется доплеровским эффектом. Следовательно, суммарный направленный вправо импульс, который лаборатория получит от двух фотонов, равен импульсу, который был передан летящим вправо фотоном hν0[1 + (v/c)]/с минус импульс, сообщенный фотоном, летящим влево, hν0[1 – (v/c)]/с. Имеем формулу 2hν0(v/c2) для общего импульса вправо, который два фотона сообщают лаборатории. Лаборатория приобретает такой общий импульс, поскольку более высокочастотный (голубой) фотон, летящий вправо, ударяет стену сильнее, и этот удар не компенсируется более слабым толчком, который сообщает летящий влево более низкочастотный (красный) фотон. Итак, 2hν0 = ΔE – это всего лишь энергия, испускаемая частицей в виде двух фотонов. Направленный вправо импульс, полученный лабораторией, равен ΔE v/c2.Множитель v/c2 получается из множителя v/c, обусловленного доплеровским смещением, и множителя 1/c в силу соотношения импульса и энергии, которую несут фотоны.

По закону сохранения импульса величина импульса, приобретенного лабораторией, должна быть равна величине импульса, потерянного частицей. Импульс частицы равен mv (поскольку v << c, формула Ньютона для импульса в данном случае точна). Скорость частицы не изменяется, и поэтому потерять часть импульса mv частица может лишь одним способом – потеряв часть массы. Уменьшение ее импульса составляет vΔm, где Δm – масса, утраченная частицей.

Приравняв ΔE v/c2 = vΔm, находим, что ΔE/c2 = Δm. Невысокая скорость v нашей частицы сокращается! Поскольку v << c, ответ не зависит от v. Умножив обе части формулы на c2, получим ΔE= Δmc2. Частица теряет массу. Количество утраченной массы Δm, умноженное на c2, дает количество энергии, унесенной фотонами ΔE. Убираем знаки «дельта» (Δ) с обеих сторон тождества и получаем E= mc2. Энергия, отдаваемая двумя фотонами, равна произведению массы, которую утрачивает частица, на скорость света в квадрате c2. Теряя массу, частица испускает некоторое количество энергии, определяемое по формуле E = mc2. Во множестве книг объясняется важность этой формулы и рассказывается, как она устроена, но там не пишут, как выводится эта формула. Теперь мы вам об этом рассказали.

Приложение 2
Бекенштейн, энтропия черных дыр и информация

На современных шестидюймовых [48] жестких дисках можно хранить примерно по 5 терабайт, или 4 × 1013 бит, информации. Сколько бит информации, в принципе, возможно записать на шестидюймовый жесткий диск? Во-первых, поскольку это мысленный эксперимент, вообразим, что наш жесткий диск сферический – так мы сможем вложить в этот объем максимум информации. Наш жесткий диск получится размером примерно с грейпфрут, его радиус составит 7,5 см. Бекенштейн показал, что черная дыра обладает конечной энтропией, пропорциональной площади ее горизонта событий. В итоге оказалось, что энтропия горизонта черной дыры (S) в точности равна 1/4 площади горизонта событий, если измерить эту площадь в планковских единицах в квадрате (в конечном итоге точное значение вычислил Хокинг). В планковских единицах площадь поверхности черной дыры радиусом 7,5 см составляет 4π(7,5 см/1,6 × 10–33 см)2 = 2,76 × 1068. Четверть от этого значения составит энтропия S = 6,9 × 1067. Конкретное значение энтропии (возрастания неупорядоченности) соответствует конкретной мере уничтожения информации. Количество битов этой информации, соответствующее энтропии S, составляет S/ln 2. Натуральный логарифм от 2 (обозначенный в этой формуле «ln 2») равен 0,69. Здесь присутствует двойка, так как один бит информации – это один ответ на вопрос «да/нет», то есть вопрос, предполагающий два варианта ответа. (Например, игра «Да или нет» с 20 вопросами дает 20 битов информации.) Если я скажу вам, что задумал число от 1 до 220(около миллиона), то, пытаясь его угадать, вы первым делом должны спросить: «Оно во второй половине этого интервала?» Узнав, в какой оно части, продолжайте делить этот диапазон пополам, и через 20 вопросов узнаете, какое число я загадал. Следовательно, возникновение черной дыры радиусом 7,5 см – это повышение неупорядоченности во Вселенной, равное уничтожению 1068 бит информации. Есть 21068 различных способов создать такую черную дыру, взяв для нее 1068 бит информации, и, как только черная дыра сформируется, вся эта информация о ее составе будет потеряна. Если на вашем шестидюймовом диске записано более 1068 битов информации, и вы станете подвергать его гравитационному коллапсу, сжимая, пока он не превратится в микроскопическую черную дыру, то вся эта информация будет потеряна. Впрочем, вы не сможете создать микроскопическую черную дыру, поскольку при черная дыра, при образовании которой теряется более 1068 битов информации, должна иметь диаметр больше 6 дюймов. Противоречие. Что же произойдет на самом деле, если мы попытаемся впихнуть все больше и больше информации на жесткий диск с фиксированным радиусом 7,5 см? Его масса будет расти и расти, пока не наступит момент, когда на нем окажется 1068 бит информации, а масса диска в 8,4 раза превысит массу Земли и он сколлапсирует, превратившись в черную дыру. Следовательно, 1068 бит информации (1,16 × 1058гигабайт) – предельное количество информации, которое можно сохранить на шестидюймовом жестком диске.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация