Где точки, расположенные на уровне 0,75 радиуса Шварцшильда? Они выстраиваются вдоль гиперболы, напоминающей улыбку, над диагональной линией горизонта событий. Далеко справа она сверху стремится к линии горизонта событий ГС, но так и не соприкасается с ней. Сингулярность в точке r = 0 – еще одна гипербола, напоминающая улыбку, лежащая над линией 0,75 радиуса Шварцшильда. Мировая линия аспиранта стыкуется с этой горизонтальной улыбкой. Мы нарисовали на ней зубы, так что получился оскал челюстей, готовых сожрать аспиранта. Пространство-время настолько искривлено, что сингулярность, которая, как могло бы показаться, должна обозначаться вертикальной линией слева, искривлена, пока не уходит в будущее. На самом деле, стоит аспиранту пересечь горизонт событий – и эта линия оказывается у него в будущем. Теперь она для него так же неизбежна, как наступление следующей среды. Как бы ни пытался он разогнать ракету быстрее скорости света, это невозможно, и аспирант вынужден двигаться вверх под углом 45°. После того как аспирант минует горизонт событий, гипербола, соответствующая сингулярности, нависнет над ним и будет простираться более чем на ±45°, так что его мировая линия неизбежно в нее упрется. Он обречен. Аналогично, сигнал «ПЛОХО», отправленный аспирантом вправо под углом 45° уже после пересечения горизонта событий, также попадет в челюсти сингулярности в точке r = 0.
Можно завершить диаграмму Крускала, чтобы получилось полное решение для точечной массы. Это массивная точка, возникшая в далеком прошлом, которая будет существовать и в бесконечно отдаленном будущем, когда Вселенная совершенно опустеет. Диагональная линия горизонта событий ГС встречается с другой диагональной линией, идущей во встречном направлении. Посреди диаграммы получается огромная фигура X. Этот X делит пространство-время на четыре области. Область, где остался профессор – вне черной дыры, – находится справа от X. Это наша Вселенная. Над X находится внутренняя часть черной дыры, где в будущем (сверху) зияет сингулярность. Под Xрасположена исходная сингулярность, обозначенная r = 0, кажется, что прошлое внизу нахмурилось. Слева находится другая Вселенная, похожая на нашу. Между ней и нашей Вселенной – «кротовая нора», расположенная в середине. Если сделать горизонтальный срез через это пространство-время в самой середине, то получится срез конкретного момента во времени. Геометрически кротовая нора напоминает две воронки, перетекающие друг в друга в самой узкой точке. В дальней правой части воронки видим широкую окружность – это большой радиус, вдали от черной дыры. Влево воронка постепенно сужается, пока не превращается в окружность длиной 2πrS на горизонте событий в центре X. Затем дыра вновь распахивается и достигает большого радиуса, на левой оконечности X. Две воронки стыкуются, образуя кротовую нору. Вдали от дыры воронки постепенно уплощаются и становятся такими же ровными, как баскетбольные площадки, причем они продолжаются до бесконечности. Вообразите себе здание, на втором этаже которого устроена баскетбольная площадка, а в центре площадки просверлена искривленная воронка, ведущая вниз (напоминает лунку на поле для гольфа). Воронка постепенно раскрывается и распахивается так, что на первом этаже (под баскетбольной площадкой) превращается в совершенно ровный потолок. В данном случае баскетбольная площадка – это наша большая Вселенная, а первый этаж – вторая большая Вселенная, сопряженная с нашей через узкую дыру и подобная потолку на первом этаже. Две большие Вселенные соединены кротовой норой в мгновение, обозначенное горизонтальной линией, проведенной через диаграмму. Но через эту кротовую нору невозможно проникнуть из одной Вселенной в другую. Дело в том, что перекладины X расположены ровно под углом 45°. Чтобы перейти из области справа от X (из нашей Вселенной) в область слева от X (в другую Вселенную), нужна мировая линия, отклоненная от вертикали на угол более 45°. То есть нужно двигаться со сверхсветовой скоростью, а это невозможно. Но, в принципе, можно повстречать пришельцев из другой Вселенной внутри черной дыры, в ее верхней четверти (в будущем). Вы могли бы даже пожать друг другу руки. Сказать: «Дружище, мы в беде» – прежде, чем оба погибнете, врезавшись в улыбающуюся сингулярность в будущем. Вы достигнете сингулярности за конечный период времени.
Исходная сингулярность внизу (в прошлом) весьма напоминает сингулярность Большого взрыва, с которой началась наша Вселенная. Эта часть решения называется «белая дыра». Она напоминает черную дыру с обратным ходом времени – как если бы события в черной дыре перематывались назад. Частица может возникнуть в сингулярности белой дыры в нижней части диаграммы, и мировая линия этой частицы попадет в нашу Вселенную. Если частица попадет в черную дыру, то может выйти обратно из белой дыры.
Такие черные дыры, которые мы можем обнаружить, существовали не всегда. Есть реалистичная модель, согласно которой черная дыра может образоваться при коллапсе звезды. Предположим, что на пространственно-временной диаграмме Крускала поверхность коллапсирующей звезды находится прямо под ногами у аспиранта: и когда он еще вместе с профессором, и когда он падает в дыру. Речь о ситуации, когда звезда долгое время сохраняет радиус величиной 1,25 радиуса Шварцшильда, а затем начинает схлопываться в тот самый момент, когда в дыру начинает падать аспирант, – то есть поверхность звезды несется к центру, а вслед за ней падает аспирант. В таком случае мировая линия звезды будет параллельна мировой линии аспиранта и пойдет слева от нее. Под ногами у падающего аспиранта откроются недра звезды, где плотность материи ненулевая и вакуумное решение диаграммы Крускала неприменимо. Просто не обращаем внимания на ту часть диаграммы, что оказалась слева от мировой линии аспиранта, – никакой кротовой норы, никакой другой вселенной, никакой сингулярности внизу, которая напоминала бы белую дыру. Они не образуются, когда черная дыра возникает при коллапсе звезды. Но та часть диаграммы, что лежит справа от мировой линии аспиранта, находится в вакууме, и в этой части все происходящее изображено точно. Аспиранта расплющивает, и его мировая линия утыкается в сингулярность в точке r = 0.
Если бы вы жили внутри звезды (в комнатке с кондиционером), то и вас бы расплющило, когда звезда схлопнулась бы в нулевой объем и приобрела при этом бесконечную плотность. В будущем ваша мировая линия также неизбежно упрется в сингулярность кривизны: вы уткнетесь в r = 0, когда звезда схлопнется до нулевого размера.
Мой вам совет: просто не приближайтесь к радиусу Шварцшильда – и все будет нормально. Можно без проблем вращаться по орбите вокруг горизонта событий черной дыры. Если Солнце сколлапсирует и превратится в черную дыру, то Земля останется вне дыры, на нынешней орбите. Вы увидите черную дыру, которая будет выглядеть как черный диск в небе. Вокруг нее будут искаженные гравитационной линзой звезды, расположенные за дырой (рис. 20.3).
В 1963 году Рой Керр открыл точное решение эйнштейновских уравнений поля для вращающейся черной дыры (такой, что обладает моментом импульса). Такая черная дыра имеет за горизонтом событий более сложную геометрию, которую мы обсудим в главе 21. Но ее горизонт событий – это точка невозврата, точно как и у шварцшильдовской черной дыры. Решение Керра блестяще подтвердилось 14 сентября 2015 года, когда астрономы из лазерно-интерферометрической гравитационно-волновой обсерватории (LIGO) зафиксировали образование вращающейся керровской черной дыры в 62 солнечные массы при столкновении двух черных дыр: одной в 29 солнечных масс, а другой – в 36 солнечных масс. Две эти дыры образовали прочную связку и по спирали устремились друг к другу, теряя энергию в форме гравитационного излучения.