В своей «Географии» Птолемей указывает длину градуса – 500 стадиев и окружности – 180 000 стадиев. Так как это относится к значению Посидония точно так же, как путевой стадий к египетскому, очевидно, что Птолемей использовал официальный египетский стадий, равный 210 метрам, который практически равен 1/7 римской мили (всего лишь примерно на метр меньше) и, значит, был удобной единицей измерения для подданного Римской империи и жителя Египта. Он просто взял значение Посидония и перевел его в другую единицу измерения
[157].
Таким образом, греческие астрономы имели довольно верное представление о размерах Земли. Теперь мы посмотрим, что они думали насчет расстояний между небесными светилами.
Первым философом, который стал рассуждать об этих расстояниях, был Анаксимандр. Он полагал, что расстояние до Солнца в 27, а до Луны – в 19 раз больше радиуса Земли, или, возможно, расстояние до Солнца в 27 раз больше расстояния до Луны
[158]. Следующий мыслитель, кому приписывают размышления такого рода, – это Пифагор, и, как считается, его идеи по этому вопросу связаны с теорией «гармонии сфер». Единственное, что у нас есть на этот счет, мы знаем от авторов гораздо более позднего времени, но большинство философов после V века более-менее разделяли красивую фантазию о том, что всей Вселенной правит гармония, которая продолжала пленять человеческий разум до конца Средневековья:
Взгляни, как небосвод
Весь выложен кружками золотыми;
И самый малый, если посмотреть,
Поет в своем движенье, точно ангел,
И вторит юнооким херувимам.
Гармония подобная живет
В бессмертных душах; но пока она
Земною, грязной оболочкой праха
Прикрыта грубо, мы ее не слышим
[159].
Мы уже видели, что это была главная идея в платоновском учении о душе мира и что она привела его к заключению, что радиусы планетных орбит пропорциональны числам 1, 2, 3, 4, 8, 9, 27, хотя последнее из этих чисел не соответствует ни одной ноте в греческой музыке. Музыкальные звукоряды, приписываемые Пифагору разными авторами, не совсем совпадают. По Плинию («Естественная история», XXI, 84), интервалы между планетами таковы:
Земля – Луна: тон.
Луна – Меркурий: полутон (dimidium ejus spati).
Меркурий – Венера: полутон (fere tantundem).
Венера – Солнце: малая терция (sescuplum).
Солнце – Марс: тон.
Марс – Юпитер: полутон (dimidium).
Юпитер – Сатурн: полутон (dimidium).
Сатурн – неподвижные звезды: малая терция (sescuplum).
Звукоряд соответствует нотам до, ре, ми-бемоль, ми, соль, ля, си-бемоль, си, ре. Плиний допускает прискорбную оплошность, прибавляя, что «всего получается семь тонов, что образует «октаву», именуемую у греков «гармонией», в то время как он состоит из двух частей, каждая из которых образует квинту. Но так как Земля покоится в неподвижности, она не может издавать звуки, и, если вывести ее из рассуждения, интервалы от Луны до неподвижных звезд действительно образуют октаву дорийского лада. У Цензорина последний интервал – полутон (limma), но в остальном он полностью согласен с Плинием
[160]. Тогда неподвижные звезды соответствуют не ре, а до и весь ряд образует октаву (диапазон), но она не совпадает с музыкальной системой Пифагора, в которой интервал от средней до самой высокой ноты составляет всего лишь квинту. Цензорин также забывает, что вначале он заявил, что только семь планет издают музыку. Тот же самый звукоряд указывает и Теон (с. 187), ссылаясь на поэта Александра
[161], и очень похожую – Ахилл, то есть до, ре, ми, фа, соль, ля, си-бемоль, си, до, с интервалами 1, 1, ½, 1, 1, ½, ½, ½ и Солнцем, идущим после Луны. Однако очень важно отметить то обстоятельство, что все эти звукоряды встречаются только у очень поздних авторов. Из ссылок у Платона и Аристотеля мы знаем, что общая идея гармонии сфер уходит еще к началу IV века до н. э. Конечно, она могла возникнуть и раньше, хотя в таком случае Филолай должен был ее проигнорировать, так как она несовместима с его системой из десяти планет. Следующая ссылка содержится в так называемом Папирусе Евдокса, где утверждается, что Солнце гораздо больше Луны (и вследствие этого, поскольку их угловые диаметры равны, Солнце находится гораздо дальше, чем Луна), так как диапента (квинта) больше диатессарона (кварты), иначе говоря, расстояние до Солнца так же относится к расстоянию до Луны, как квинта к тону или как 9 к 1
[162]. Это та же пропорция, которую приводят Плиний и другие поздние авторы, но в остальном у них совершенно иная точка зрения на вопрос, потому что расстояния у них пропорциональны интервалам, а не представляющим их числам, то есть расстояние до Солнца становится в З½ раза больше расстояния до Луны, а не в 9 раз, как у Евдокса. Также вводится более поздний порядок расположения планет
[163], и вся система превращается в кучу произвольных допущений, так что даже идея о том, что неподвижные звезды издают самую высокую ноту (νήτη), а Луна – самую низкую (ὑπάτη), перевернута наоборот у неопифаторейца Никомаха. Его мысль, очевидно, состоит в том, что Луна, как ближайшее к Земле тело, должна соответствовать самой короткой, а Сатурн – самой длинной струне из семи струн лиры. Другие теоретики в соответствии с пятью тетрахордами так называемой совершенной системы предполагали в небесах пять равных интервалов, один от Луны до Солнца (с Меркурием и Венерой), второй оттуда до Марса, третий от Марса до Юпитера, четвертый от Юпитера до Сатурна, пятый от Сатурна до сферы неподвижных звезд. И в то время как одни вслепую нащупывали гармонию Вселенной в расстояниях между планетами, другие искали ее в сухости, тепле, влажности или твердости звезд; или вместе с Птолемеем сравнивали угловые расстояния планет в небе с музыкальными интервалами, так чтобы октава соответствовала 180° (противостояние), а квинта – 120° (тритон), кварта – 90° (квадратура), секунда – 60° (aspectus sextilis). На самом же деле едва ли нужно относиться серьезно к планетным интервалам, определяемым гармонией сфер; вся эта теория очень похожа на астрологию, хотя и гораздо более возвышенна по своему замыслу и заслуживает уважительного упоминания в истории человеческого прогресса.