Книга А что, если они нам не враги? Как болезни спасают людей от вымирания, страница 41. Автор книги Шарон Моалем

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «А что, если они нам не враги? Как болезни спасают людей от вымирания»

Cтраница 41

Будь это действительно так, это означало бы, что Ламарк – чья репутация из-за распространения одной из многих идей, которые не были даже его собственными, сильно пострадала, – стал жертвой по-настоящему несправедливого к себе отношения.

* * *

С точки зрения эволюции мы главным образом знакомы с мутациями в зародышевой линии – мутациями, которые приводят к появлению нового гена в сперматозоиде или яйцеклетке, в результате чего у потомства появляется какой-то новый признак. Как вам известно, если этот новый признак способствует выживанию и размножению потомства, то вероятность его распространения повышается – первое поколение потомства передает его следующему. Если же новый признак мешает выживанию или размножению, то он в конечном счете исчезает, так как вероятность оставить здоровое потомство у его носителей снижается. Вместе с тем мутации постоянно происходят и за пределами зародышевой линии. Рак является примером одной из самой распространенных – и самых страшных – мутаций подобного рода.

По сути, рак представляет собой неконтролируемый рост клеток, вызванный мутацией в гене, который должен контролировать рост раковых клеток.

Некоторые виды рака являются, по крайней мере частично, наследственными – мутации в генах BRCA1 или BRCA2, к примеру, значительно увеличивают риск развития рака молочной железы [119], а эти мутации могут передаваться от одного поколения к другому. Другие виды рака могут быть связаны с мутациями, вызванными какими-то внешними триггерами – например, курением или воздействием радиации.

Многие мутации – особенно это касается соматических мутаций – не идут человеку на пользу. Это логично – биологические организмы, особенно организм человека, невероятно сложно устроены. Вместе с тем мутация, по определению, вовсе не обязательно должна быть плохой – это просто изменение. Именно за счет этого, как оказалось, прыгающие гены могут помогать людям двумя важными способами.

Прыгающие гены ведут себя чрезвычайно активно на ранних стадиях развития мозга – генетический материал почти беспорядочным образом вставляется по всему мозгу в рамках его нормального развития. Каждый раз, когда эти прыгуны меняют генетический материал клеток мозга, формально это является мутацией. И все эти генетические прыжки могут выполнять очень важную функцию – возможно, они помогают создавать разнообразие и индивидуальность, делающие каждый мозг по-своему уникальным. Эта безумная генетическая мешанина в процессе развития происходит только в головном мозге, потому что именно здесь индивидуальные особенности имеют свой смысл. Как ловко подметил ведущий автор исследования, в ходе которого был открыт этот механизм, профессор Фред Гэйдж: «Вам вряд ли бы понравилось добавление такой же индивидуальности к сердцу» [120].

Нейронная сеть головного мозга – это не единственная сложная система нашего организма, приветствующая разнообразие, – иммунной системе оно тоже идет на пользу. На самом деле наша иммунная система использует самую разношерстную рабочую силу в истории – без нее наш вид не смог бы протянуть так долго.

Чтобы противостоять потенциальной угрозе со стороны огромного количества разнообразных микроскопических паразитов, иммунная система человека использует более миллиона различных антител – специализированных белков, действие которых направлено против каждого из этих болезнетворных организмов. Механизм производства всех этих белков до конца еще не изучен – особенно если учесть, что количества наших генов явно недостаточно для того, чтобы его объяснить (как вы помните, у нас имеется всего порядка двадцати тысяч активных генов, а мы говорим о возможности существования более миллиона различных антител). Проведенное недавно исследование в Университете Джона Хопкинса связало механизм производства антител иммунной системы с нашими новыми друзьями – прыгающими генами.

Кирпичиками, из которых строятся все антитела, являются так называемые В-лимфоциты. Когда у нас появляется необходимость в производстве какого-то конкретного антитела, В-лимфоциты ищут инструкции для производства этого антитела в своей ДНК, хотя отдельные строчки инструкций обычно оказываются перемешаны с инструкциями для других антител. Они вырезают строки с инструкциями для других антител, связывая вместе то, что осталось, тем самым переписывая собственный генетический код и производя в процессе специализированный продукт. Этот процесс носит название V(D)J-рекомбинации.

Этот процесс выглядит похожим на механизм «вырезать и вставить», используемый некоторыми прыгающими генами, но есть одно ключевое отличие – V(D)J-рекомбинация соединяет оставшиеся кусочки инструкций не намертво, она оставляет между ними небольшую петлю. Ученым никогда не удавалось увидеть подобное в прыгающих генах, пока ученые из Университета Джона Хопкинса не обнаружили его у комнатной мухи – поведение ее гена под названием Hermes во многом напоминало V(D)J-рекомбинацию. Нэнси Крэйг, одна из ученых, участвовавших в этом исследовании, прокомментировала это следующими словами: «Поведение Hermes больше напоминает процесс, используемый иммунной системой для распознавания различных белков… чем у любых других прежде изученных прыгающих генов. Это является первым в своем роде настоящим доказательством того, что генетический процесс, лежащий за разнообразием [антител], мог эволюционировать из механизмов прыгающего гена, который, вероятно, был родственным гену Hermes» [121].

После того как организм выработает антитела против того или иного болезнетворного микроорганизма, эти антитела остаются у нас навсегда – что зачастую оказывается серьезным подспорьем в случае повторной атаки этими микроорганизмами. Иногда это способствует приобретению иммунитета к такой инфекции, как, например, бывает у большинства людей в случае с корью. Однако несмотря на то, что мутации в В-лимфоцитах остаются в нашем организме, мы не можем передавать их своим детям, потому что они находятся по соматическую сторону барьера Вейсмана.

Младенцы рождаются с очень небольшим количеством антител, и их иммунной системе приходится работать в ускоренном режиме.

Это одна из причин, по которым грудное молоко так полезно для новорожденных – оно содержит в себе некоторые материнские антитела, выступающие в роли временной пассивной вакцинации против инфекций до тех пор, пока иммунная система малыша еще набирает обороты. Сегодня ученые только начинают понимать, какую роль играют транспозируемые генетические элементы – прыгающие гены в жизни человека и эволюции, и насколько она важна [122]. По данным исследований, целая четверть всех активных – участвующих в процессе кодирования – генов человека несут в себе ДНК прыгающих генов.

Джеф Буке, профессор молекулярной биологии и генетики в Школе медицины Джона Хопкинса, предположил, что прыгающие гены участвовали в изменении генома гораздо активнее, чем считалось ранее [123]. Эти изменения, вероятно, чаще всего оказывались губительными, однако иногда они могли слегка увеличивать генетическое разнообразие, а то и вовсе улучшать выживаемость и способность организма к адаптации. Подобные изменения, вероятно, происходили тысячи раз в процессе эволюции человека.

Нам известно, что в истории человечества были периоды, в которые условия окружающей среды менялись настолько кардинально и стремительно, что сложно представить, как случайные, постепенные изменения могли позволить нам приспособиться к ним в достаточной мере для того, чтобы выжить. Выдающиеся эволюционные биологи Стивен Гулд и Нильс Элдридж разработали теорию прерывистого равновесия, согласно которой длительные периоды относительной эволюционной стабильности прерывались куда более короткими периодами значительных эволюционных преобразований, вызванных серьезными изменениями условий окружающей среды. Возможно ли, что прыгающие гены помогали людям быстро адаптироваться к изменившимся условиям? Что ж, скорее всего, именно так и происходило.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация