На диаграмме Фейнмана взаимодействие происходит путем обмена частицами, чья масса обратно пропорциональна радиусу взаимодействия. Поскольку радиус электромагнитного взаимодействия, похоже, не имеет пределов, его носитель, фотон, должен иметь массу, очень близкую к нулю. На деле же, согласно принципу калибровочной инвариантности, масса фотона в точности равна нулю. В то же время частицы, являющиеся переносчиками слабого взаимодействия, должны иметь массу 80,4 или 90,8 ГэВ. Это значит, они почти на два порядка массивнее протона (0,938 ГэВ).
Согласно модели Салама — Глэшоу — Вайнберга, при энергии, примерно равной 100 ГэВ (теперь известно, что это значение равно 173 ГэВ), электромагнитное и слабое взаимодействие объединяются. При более низкой энергии симметрия спонтанно, то есть случайным образом, разделяется на две разные симметрии: одна соответствует электромагнитному, а вторая — слабому взаимодействию. Фотон все так же не имеет массы, в то время как три слабых бозона — W+ и W-, имеющие электрические заряды +е и -e соответственно, и электрически нейтральный Z-бозон — имеют массу, обусловленную коротким радиусом слабого взаимодействия.
При нарушении электрослабой симметрии слабые бозоны, как и лептоны, получают массу благодаря механизму Хиггса, который впервые предложили в 1964 году шесть авторов: Питер Хиггс из Эдинбургского университета, Роберт Браут (ныне покойный) и Франсуа Энглер из Брюссельского свободного университета, Джеральд Гуральник из Брауновского университета, Дик Хаген из Рочестерского университета и Том Киббл из Имперского колледжа Лондона — в трех независимых работах, опубликованных задолго до появления стандартной модели
. Процесс был назван в честь лишь одного из шестерых — скромного британского физика Питера Хиггса, к его великому смущению.
Согласно механизму Хиггса безмассовые частицы обретают массу, разбрасывая в стороны частицы с нулевым спином, называемые бозонами Хиггса. Этот механизм стал неотъемлемой частью стандартной модели, которая была разработана спустя 10 лет.
По сути, это можно представить так: Вселенная — это среда, наполненная массивными частицами Хиггса, которые то существуют, то перестают существовать. Когда элементарная частица с нулевой массой пытается пролететь сквозь эту среду на скорости света, она отскакивает от частиц Хиггса, так что ее продвижение через среду замедляется. Таким образом происходит фактическое увеличение инерции, а масса представляет собой меру инерции тела.
Стандартная модель прогнозирует, чему в точности будут равны массы слабых бозонов: 80,4 ГэВ для Ws и 90,8 ГэВ для Z. Она также предсказывает существование слабых нейтральных токов, упомянутых в главе 10 в связи с их ролью во взрывах сверхновых, которые появляются вследствие обмена незаряженными Z-бозонами. В 1983 году эти прогнозы были блестяще подтверждены.
Полная стандартная модель, включающая как сильное, так и слабое взаимодействие, основывается на объединенной группе симметрии. Сильное взаимодействие рассматривается отдельно, а его переносчики, как уже упоминалось, — это восемь безмассовых глюонов. Небольшой радиус сильного взаимодействия — порядка 10-15 м — обусловлен не массами глюонов, которые равны нулю, однако нет нужды углубляться в этот вопрос.
К концу XX века эксперименты на ускорителях частиц обеспечили достаточное эмпирическое подтверждение стандартной модели при энергии меньше 100 ГэВ, а также измерения ее 20 или около того настраиваемых параметров, в некоторых случаях невероятно точные. Модель согласуется с данными всех наблюдений, проведенных в физических лабораториях за десятилетия, прошедшие с момента ее появления.
4 июля 2012 года результаты двух экспериментов стоимостью в миллиарды долларов с участием тысяч физиков, работавших на БАК в ЦЕРНе, показали независимо и с большой степенью статистической значимости, что были обнаружены сигналы в массовом диапазоне 125–126 ГэВ, соответствующие всем условиям, которым должен отвечать бозон Хиггса в стандартной модели. Двое из шести ученых, предположивших его существование, Питер Хиггс и Франсуа Энглер, разделили в 2013 году Нобелевскую премию по физике.
Разумеется, как это всегда бывает с моделями, стандартная модель не ставит точку в физике частиц. Но с подтверждением существования бозона Хиггса и появлением более мощных источников энергии мы окончательно готовы перейти на следующий уровень понимания базовой природы вещества и, как мы вскоре увидим, глубже проникнуть в суть Большого взрыва. В настоящее время мощность БАК повышают до 14 ТэВ, но придется подождать еще год или два, чтобы выяснить, что нового он позволит нам узнать о физике на этом уровне.
На момент написания книги у нас уже имеются и данные, и описывающая их теория, которые предоставляют нам надежную информацию о физических процессах, протекавших во Вселенной на этапе, когда ее температура равнялась 1 ТэВ (1016 градусов), то есть тогда, когда ее возраст был всего 10-12 с (одна триллионная).
Частицы или поля?
Теория относительности, квантовая механика и выведенные из них квантовая теория поля и стандартная модель входят в список наиболее успешных научных теорий всех времен. Они согласуются со всеми эмпирическими данными, во многих случаях с невероятной точностью. Тем не менее, если вы следите за популярными научными СМИ, у вас может появиться впечатление, что эти теории находятся в серьезном кризисе, поскольку никто не может удовлетворительно объяснить, что же они «на самом деле значат».
Этим ощущением кризиса пользуются шарлатаны, убеждая множество простодушных обывателей в том, что «новая реальность» современной физики разрушила старую материалистическую редукционистскую картину мира, а на ее месте возникла холистическая реальность, в которой фундаментальной субстанцией Вселенной является разум — вселенское космическое сознание. Я называю такой подход квантовым мистицизмом
. К сожалению, некоторые физики-теоретики непреднамеренно поддерживают эту новую метафизику, воскрешая собственные мистические представления о реальности. Типичный пример приводит Дэвид Тонг в своей статье, вышедшей в декабре 2012 года в журнале Scientific American:
«В физике принято учить, что “кирпичики” природы — это дискретные частицы, такие как электрон или кварк. Но это ложь. Кирпичики наших теорий — не частицы, а поля: непрерывные, похожие на жидкость объекты, разливающиеся в пространстве»
.
Такой подход сильно сбивает с толку. Никому до сих пор не удавалось наблюдать квантовое поле. Однако мы наблюдаем то, что всегда получается просто и точно описать как точечные частицы.
Квантовые поля — это чистая абстракция, математические построения в рамках квантовой теории поля. В этой теории каждое квантовое поле имеет связанную с ним частицу, которая называется квантом поля. Фотон представляет собой квант электромагнитного поля. Электрон — это квант поля Дирака. Бозон Хиггса — квант поля Хиггса. Другими словами, как в любви и браке, один не может существовать без другого. Кирпичики наших теорий — и частицы, и поля.