Обратите внимание на две особенности этой теории: во-первых, ее явный «дарвиновский крен», так как факту союза двух разных геномов — по сути, недарвиновского способа эволюции — уделяется мало внимания; а во-вторых, то, что она умаляет значение митохондрий. Согласно этой теории, митохондрии «подключились» к полноценной эукариотической клетке и были утрачены во многих примитивных линиях (например, у Giardia). Они являются эффективным способом производства энергии, и не более того. Просто новой клетке взамен устаревшего моторчика поставили двигатель от «порше». По-моему, такой подход крайне плохо объясняет, почему все сложные клетки имеют митохондрии или, если посмотреть с другой стороны, почему митохондрии необходимы для эволюции сложности.
Теперь обратимся к водородной гипотезе Билла Мартина и Миклоша Мюллера, которую мы тоже обсуждали в первой части. Согласно этой радикальной гипотезе, тесные взаимоотношения между двумя очень разными прокариотическими клетками были изначально основаны на химической взаимозависимости. В конце концов одна клетка физически захватила другую, и в ней оказались два генома. Этот гигантский скачок через генетическое пространство породил многообещающего монстра, и он тут же подпал под давление естественного отбора, которое привело к переносу генов «гостя» к хозяину. Принципиальный момент водородной гипотезы заключается в том, что примитивного эукариотического организма, который обладал ядром и вел хищный образ жизни, но не имел митохондрий, — никогда не было. Первый эукариот родился от союза двух прокариот, и это было абсолютно недарвиновским явлением. Маршрут был преодолен за один бросок без перевалочных пунктов.
Все это ставит с ног на голову наши обычные представления об эволюции как о ветвящемся древе жизни. В этом можно убедиться, посмотрев на древо жизни, изображенное русским биологом Константином Мережковским в 1905 г. (рис. 9).
Рис. 9. Предложенное Мережковским инвертированное древо жизни. Обычное «дарвиновское» древо жизни всегда строго дихотомично: ветви ветвятся, но никогда не сливаются. Эукариотическая клетка произошла за счет эндосимбиоза. На древе жизни это показано обратной бифуркацией: ветви сливаются, отчасти инвертируя древо жизни
Древа жизни всегда вызывали много споров; особенно яростно их критиковал Стивен Джей Гулд, утверждавший, что после открытия кембрийского взрыва о традиционном древе жизни говорить просто нельзя. Кембрийский взрыв — это великое и по геологическим меркам очень быстрое увеличение биоразнообразия примерно 560 миллионов лет назад. Впоследствии большинство крупных ветвей были безжалостно обрезаны — целые типы животных вымирали без следа. Дэниел Деннет в своей книге «Опасная идея Дарвина» разносит в пух и прах якобы радикальные идеи Гулда, утверждая, что его вариант не отличается от прежних ничем, кроме деформации осей: вместо горделиво возвышающегося дерева мы имеем дело с низкорослым кустарничком, пустившим вверх несколько чахлых побегов. Но Мережковскому подобные упреки не грозят. Его эволюционное древо действительно перевернуто — новый домен жизни возникает за счет срастания, а не ветвления.
То, о чем я сейчас говорю, не является откровением. Все эти соображения на слуху, а симбиоз входит в традиционный эволюционный канон, даже если там ему отводится всего лишь роль механизма возникновения эволюционных новшеств. Например, Джон Мейнард Смит (великий ученый, к сожалению, недавно умерший) и Эрш Сатмари в интереснейшей книге The Origins of Life («Истоки жизни») сравнивают биологический симбиоз с мотоциклом — симбиозом велосипеда и двигателя внутреннего сгорания. Даже если считать симбиоз шагом вперед, довольно неуклюже шутят они, кто-то должен был сначала изобрести и велосипед и двигатель внутреннего сгорания. Так и в жизни: сначала естественный отбор создает части, а потом симбиоз творчески использует их. Итак, симбиоз лучше всего объясняется в терминах дарвиновской эволюции.
Все это справедливо, но затеняет тот факт, что некоторые коренные эволюционные новшества были возможны только за счет симбиоза. Продолжая метафору Мейнарда Смита и Сатмари, если велосипед и двигатель внутреннего сгорания могли возникнуть независимо путем естественного отбора, то также мог бы возникнуть и сам мотоцикл. Конечно, при наличии готовых составных частей мотоцикл появился бы гораздо быстрее, но, если времени достаточно, он вполне мог бы возникнуть сам по себе без помощи симбиоза. Я считаю, что эукариотическая клетка сама по себе возникнуть не могла. Предоставленные самим себе, бактерии не могли дать начало эукариотам за счет одного только естественного отбора: симбиоз был нужен для преодоления пропасти между бактериями и эукариотами, а митохондрии были необходимы для разбрасывания семян сложности. Сложная жизнь невозможна без митохондрий, а митохондрии — без симбиоза. Без митохондриального союза не было бы ничего, кроме бактерий. Независимо от того, считаем ли мы симбиоз дарвиновским процессом или нет, понимание того, почему симбиоз с митохондриями был необходим, равнозначно пониманию нашего прошлого и нашего места во Вселенной
[39].
В третьей части книги мы увидим, почему между прокариотами и эукариотами лежит зияющая пропасть и почему только симбиоз мог перекинуть через нее мост. Учитывая механизм производства хемиосмотической энергии (см. вторую часть книги), происхождение эукариот от прокариот путем естественного отбора практически невозможно. Поэтому бактерии остались бактериями, и по этой же причине жизнь, какой мы ее знаем, то есть основанная на клетках, химии углерода и хемиосмосе, вряд ли преодолеет бактериальный уровень сложности где бы то ни было еще во Вселенной. Также в третьей части мы увидим, почему митохондрии заронили семена сложности на эукариотическую почву и поместили эукариот на стартовую позицию в основании лестницы восходящей сложности; а в четвертой части мы поймем, почему митохондрии обеспечили подъем эукариот по этой лестнице.
7. Почему бактерии устроены просто
Великий французский молекулярный биолог Франсуа Жакоб однажды заметил, что каждая клетка мечтает стать двумя клетками. Наше тело держит эту мечту составляющих его клеток в строгой узде, в противном случае возникает рак. Но Жакоб начинал как микробиолог, а для бактерий удвоение — это больше чем мечта. Бактерии размножаются с колоссальной скоростью. При условии хорошего питания бактерии E. coli делятся примерно один раз за 20 минут, или 72 раза в день. Одна E. coli весит примерно одну триллионную долю грамма (10-12 г). Семьдесят два клеточных деления в день соответствуют увеличению в 272 раз (= 1072 x log2 = 1021.6), то есть увеличению веса с 10-12 граммов до 4000 тонн. За два дня масса экспоненциально делящихся E. coli в 2664 раз превысит массу Земли (5,977 х 1021 тонн)!