Хотя “дыхание” щелочных источников невидимо, оно вполне реально и его хватает для поддержания жизни в подводном “городе”. Их трубы сложены не из содержащих железо и серу минералов (в богатой кислородом воде современных океанов железо почти не растворяется, но предположения Рассела относятся к очень давним временам), однако их стенки тоже имеют пористое строение и пронизаны лабиринтами микроскопических полостей со стенками из рыхлого арагонита. Как ни странно, древние, замолкшие структуры подобных источников, уже давно не испускающие клубы гидротермальной жидкости, гораздо тверже, потому что поры в стенках забиты кальцитом. Действующие же источники действительно живы: в их порах обитает множество трудолюбивых бактерий, вовсю использующих химическую неуравновешенность системы. Есть там и животные, сравнимые по разнообразию с населением “черных курильщиков”, хотя и сильно уступающие в размерах. Причины тому, по-видимому, экологические. Серные бактерии, процветающие в “черных курильщиках”, легко приспосабливаются к жизни внутри животных-хозяев, а бактерии (строго говоря — археи), обитающие в Затерянном городе, не образуют подобных совместных предприятий с животными5. Не имея внутренних бактериальных “ферм”, животные, населяющие поля щелочных источников, развиваются не столь успешно.
Башня Природы — щелочной источник тридцатиметровой высоты, возвышающийся над океанским дном, сложенным из змеевика (поле гидротермальных источников Лост-Сити в центре Атлантического океана). Участки, где расположены действующие жерла, ярко-белого цвета.
Микроскопическое строение щелочного источника, показанное на срезе шириной 1 см и толщиной 30 мкм. Видны связанные друг с другом полости, образующие идеальный инкубатор для возникновения жизни.
Жизнь в Затерянном городе зависит от реакции водорода с углекислым газом, лежащей в основе всей жизни на Земле. Необычно в Затерянном городе то, что эта реакция там идет прямо, а почти во всех других случаях она осуществляется опосредованно. На нашей планете выходящий из-под земли в форме газа чистый водород — редкий подарок, и живым существам обычно приходится добывать его там, где он соединен крепкой молекулярной связкой с другими атомами, например из воды или сероводорода. Чтобы вырвать водород из молекул таких веществ и связать его с углекислым газом, требуются затраты энергии, которую живые организмы получают исходно от солнца посредством фотосинтеза или эксплуатируя химическую неуравновешенность мира гидротермальных источников. Лишь при участии водорода эта реакция протекает самопроизвольно, хотя и мучительно долго. Впрочем, с точки зрения термодинамики такая реакция, по меткому выражению Эверетта Шока, — бесплатный обед, за который еще и приплачивают. Иными словами, она позволяет синтезировать органические молекулы напрямую и одновременно в ощутимых количествах получать энергию, которая в принципе может быть использована для других органических реакций.
Так что щелочные источники, на которые обратил внимание Рассел, действительно вполне годятся на роль инкубатора жизни. Они составляют неотъемлемую часть системы, которая приводит в движение поверхность нашей планеты и поддерживает вулканическую активность. Они пребывают в неравновесном состоянии с океанами, непрерывно поставляя в них водород, реагирующий с углекислым газом с образованием органических веществ.
Они создают лабиринты пористых полостей, где задерживаются и концентрируются молекулы этих веществ, делая гораздо вероятнее (как мы убедимся в следующей главе) сборку полимеров, как РНК. Они долговечны: трубы Затерянного города действуют уже сорок тысяч лет — на два порядка дольше, чем большинство “черных курильщиков”. И их было куда больше в глубокой древности, когда остывающая мантия планеты чаще непосредственно контактировала с водой океанов. Кроме того, океанская вода в те времена была насыщена железом, так что стенки микроскопических полостей в щелочных источниках должны были обладать каталитическими свойствами, поскольку состояли из содержащих железо и серу минералов (как и ископаемые остатки источников из деревни Тина в Ирландии). При этом они могли работать как природные проточные реакторы, в которых термические и электрохимические градиенты обеспечивали циркуляцию жидких реагентов по системе полостей с каталитическими стенками.
Все это прекрасно, но один лишь реактор, сколь угодно замечательный, — это еще не жизнь. Каким образом жизнь развилась из таких природных реакторов в тот изумительно сложный ковер, полный неповторимых узоров, который мы видим вокруг? Точный ответ, разумеется, неизвестен, но в нашем распоряжении есть некоторые ключи. Намеки нам дает сама жизнь, в первую очередь набор фундаментальных, глубоко консервативных реакций, общих почти для всех живых организмов, обитающих сейчас на Земле. Этот набор ключевых процессов обмена веществ, живое биохимическое ископаемое в каждом из нас, позволяет услышать отголоски самого далекого прошлого, вполне созвучные представлениям о первоначальном зарождении жизни в щелочном гидротермальном источнике.
Возможны два подхода к изучению проблемы происхождения жизни: от простого к сложному и от сложного к простому. В этой главе мы, обсуждая геохимические условия и термодинамические градиенты, скорее всего, существовавшие в древнейшие времена, до сих пор следовали подходу “от простого к сложному”. Мы пришли к мысли, что колыбелью жизни были, скорее всего, теплые глубоководные источники, испускавшие водород в насыщенную углекислым газом океанскую воду. Работавшие там природные электрохимические реакторы, судя по всему, могли генерировать как органические вещества, так и энергию. Однако мы до сих пор не говорили о том, какие именно реакции там шли и как они привели к появлению жизни.
Единственный источник надежных сведений о возникновении жизни — сама жизнь. Подход “от сложного к простому” предполагает выявление именно таких сведений. Можно составить перечень свойств, общих для всех живых существ, и на его основе попытаться реконструировать гипотетические свойства Последнего всеобщего предка (Last Universal Common Ancestor), любовно называемого также ЛУКА (LUCA). Так, учитывая, что лишь малая часть бактерий способна к фотосинтезу, сам ЛУКА едва ли умел фотосинтезировать. Если предположить, что он умел это делать, значит, подавляющее большинство его потомков отказалось от этого ценного навыка. Подобное представляется маловероятным, хотя этого нельзя исключать. Но у всего живого на Земле есть и общие свойства: все существа состоят из клеток (за исключением вирусов, которые могут функционировать только в клетках), у всех есть записанные в ДНК гены, все кодируют белки с помощью универсального кода, определяющего порядок аминокислот. Все живые существа используют одну и ту же энергетическую “валюту” — АТФ (аденозинтрифосфат), играющую роль чего-то вроде десятифунтовой купюры, которой можно “расплачиваться” за любую работу, выполняемую в клетке (подробнее мы поговорим об этом позже). Исходя из этого, логично предположить, что все живые организмы унаследовали эти общие свойства от своего далекого общего предка — ЛУКА.